Physics 8.422 Spring 2015

Atomic and optical Physics

 

 

 

 

Room

Tel.

e-mail

Lecturers:

Prof. Martin Zwierlein

26-255

324-4310

zwierlein.at.mit.edu

Assistants:

Kristin Beck

kbeck.at.mit.edu

 

Boris Braverman

26-217

452-3578

bbraverm.at.mit.edu

 

Michael Gutierrez

m_g.at.mit.edu

 

Colin Kennedy

colink.at.mit.edu

 

Jennifer Schloss

26-265

jschloss.at.mit.edu

Secretary:

Joanna Keseberg

26-237

253-6830

j_k.at.mit.edu

 

Lectures:     Mondays, Wednesdays

(and some Fridays 3/6)

1:00-2:30, Room 4-163

                        First day of classes: Wed, 2/4

Office hours:          MWZ:  Wed 2:45-4pm, or by appointment (just send an e-mail)

                                    TAs:  announced on problem sets, and by appointment

 

Homework drop off:  In class, or in 26-237, Monday 1pm

Term papers due:  Thursday, 5/14/2013 (day of last class) Please email to MWZ

 

 

Main topics:

·  Quantum states and dynamics of photons

·  Photon-Atom interactions: semiclassical approximations, optical Bloch equations

·  Applications and limits of the optical Bloch equations: dressed atoms, light force, decoherence

·  Cold atoms, quantum states, and quantum dynamics; ion traps, magnetic traps, evaporative cooling, Bose-Einstein condensation, degenerate Fermi gases, interatomic interactions, Feshbach resonances, ultracold atoms in optical lattices

 

Web Site for 2013                  Web Site for 8.421

Atomic Physics Wiki with Typed Lecture Notes

 

Homework

updated HW1 due Feb 23, 1pm in class

Solutions

HW2 due Mar 2, 1pm in dropbox folder

Solutions

updated HW3 due Mar 11, 1pm in class or Dropbox

Solutions

HW4, due Mar 16, 1pm in class or dropbox

Solutions

HW5, due Mar 30, 1pm in class or dropbox

Solutions

HW6, due Wednesday, April 8th

Solutions

HW7, due Wednesday, April 15th

Solutions

HW8, due Wednesday, April 22nd

Solutions

HW9, due Wednesday, April 29th

 

HW10, due Wednesday, May 6th

 

 

MIT Stellar grade management            Course requirements

Course info and calendar                     Recommended books

 

Course outline

1.  Introduction, atom-light Hamiltonian (L1-2)

2. Quantum light: states and dynamics (L3-6)

3. Photon-atom interactions (L7-8)

4.  Optical Bloch equations (L9-12)

5.  Light forces (L13-15)

6. Ion traps (L16-17)

7. Bose-Einstein Condensates and Ultracold Atoms (L18-25)

 

Class Notes and additional reading material:

1. L1 Introduction                                                                                        

Slides

A Brief History of Atomic Physics: See D. Kleppner, RMP 71, S78, 1999
Papers: Lamb Shift paper, Rabi’s Hydrogen Hyperfine paper

            Recent advances in AMO physics   

Topics of this course

8.421 vs. 8.422

Requirements

 

2. L2 Photon-Atom Interactions I: Phenomenological Models

1.1 Lorentz Model

1.2 Einstein Model

 

3. L3 Photon-Atom Interactions II: Quantization of the E&M Field

2 Classical Electrodynamics

2.1 Maxwell’s and Lorentz equations

2.2 Vector potential

2.3 Electrodynamics in reciprocal space

2.4 Normal variables

2.5 Quantization of the E&M field

2.6 Total Hamiltonian and Momentum

2.7 State Space

2.8 The Dipole Interaction

 

Reading:

The discussion follows the appendix in Atom –Photon Interactions.

Please read pp. 621 – 643   Download

Further reading:

A 500-page derivation and discussion of the basic equations of QED can be found in

Cohen-Tannoudji, Claude, Dupont-Roc, Jaques, and Grynberg, Gilbert, Photons & Atoms, Wiley-Interscience, 1997.

4. L4 Quantum States of Light I

Handouts:                                    

Loudon, chapter 3; Weissbluth, 4.4-4.8

5. L5 Quantum States of Light II

 

Further reading:

Yamamoto and Rempe group papers (example of single photon g(2)(tau) meas.)

Yamamoto paper on Generation of number states

 

Wigner function: Term paper by Boris Braverman, lots of visual examples, including reconstruction via homodyne detection, plus lots of references

6. L6 Non-Classical Light

 

    Further reading:

Weissbluth, 4.9 .  Section on squeezed states

H.J. Kimble, Quantum fluctuations in quantum optics, in Les Houches 1990.  Extensive and advanced treatment of squeezed light.

R.W. Henry and S. C. Glotzer, A squeezed-state primer, Am. J. Phys. 56, 318 (1988).  Basic discussion using only elementary quantum mechanics.

M.C. Teich and B. E. A. Saleh Squeezed and AntiBunched Light, Physics Today, June 1990.   Popular article on non-classical light.

    Generation of squeezed states, classical squeezing

F. DiFilippo et al, Classical Amplitude Squeezing for Precision Measurements. PRL, 68, 2859 (1992).

    Teleportation

A. Furusawa et al, Unconditional Quantum Teleportation. Science, 282, 706 (1998) .

     Beam splitter and homodyne detection                                                                        

B.L. Schumaker, “Noise in homodyne detection”, Optics Letters 9, 189 (1984)

     Experiments with squeezed light

Ling-An Wu, H.J. Kimble, J.L. Hall, H. Wu, “Generation of Squeezed States by Parametric Down Conversion”, PRL 57, 2520 (1986)

Min Xiao, Ling-An Wu, H.J. Kimble, “Precision Measurement beyond the Shot-Noise Limit”, PRL 59, 279 (1987)

E.S. Polzik, J. Carri, H.J. Kimble, “Spectroscopy with Squeezed Light”, PRL 68, 3020 (1992)

7. L7 Single Photons

8. L8 Single Photons II

9. Entangled states

     Entanglement

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, C. Monroe, “Experimental entanglement of four particles”, Nature 404, 256 (2000)

 

Excerpts from Nielsen and Chuang Quantum Computation and Quantum Information on Schmidt Decomposition

 

Gravitational wave detection:

C.M. Caves, “Quantum-mechanical noise in an interferometer”, Phys. Rev. D 23, 1693-1708 (1981)

Heisenberg limited interferometry

Vittorio Giovannetti, Seth Lloyd, Lorenzo Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit”, preprint quant-ph/0412078

Proposal for atom interferometry:

P. Bouyer, M. A. Kasevich, “Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases”, PRA 56, R1083 (1997)

Creation of correlated states with Bose-Einstein condensates:

J.M. Vogels, J. K. Chin, and W. Ketterle, “Coherent Collisions between Bose-Einstein Condensates”, PRL 90, 030403 (2003).

 

Further reading on HW4: Note on g_2 for atoms and light

Reading:  some pages from Gordon Baym, Lectures on Quantum Mechanics

PRL on HBT experiment with cold atoms
2007 Nature paper

2014 Science paper on HBT with two atoms in a double-well

 

10. L10 Atom-Light Interactions

API see pp. 15-21 and Complement A_I

11. L11 Spontaneous Emission, Absorption, Scattering

 

Daniel Kleppner, Inhibited Spontaneous Emission, PRL 47, 233 (1981)

 

12. L12 Spontaneous Decay

 

Lecture notes on Wigner-Weisskopf treatment

 

Further reading:

API Complement CI, Discrete Level Coupled to a Broad Continuum, pp. 49-66

13. L13 Resonant Scattering – Simple Model

 

14. L14 Van der Waals and Casimir Forces I

 

Further reading:

Van der Waals interaction: API 118-126

four pages course notes from Dan Kleppner

Physics Today paper by L. Spruch (Nov. 1986, p. 37)

15. L15 Van der Waals and Casimir Forces II

 

Further reading:

Casimir, Polder, “The Influence of Retardation on the London-van der Waals Forces”, Phys. Rev. 73, 360 (1948)

Copies from Serge Haroche’s summer school notes

Jaffe paper on Casimir force and zero-point energy

16. L16 Non-Perturbative Calculation of Transition Amplitudes

API Chapter 3

Further reading:  J. Dalibard, J. Dupont-Roc and C. Cohen-Tannoudji, Vacuum fluctuations and radiation reaction: identification of their respective contributions, J. Physique 43, 1617-1638 (1982).

 

17. L17 Derivation of the Master Equation

API Chapter IV

 

18. L18 Optical Bloch Equations
API Chapter V

 

19. L19 Light Forces I

API Chapter V