People: Markus Greiner

Professor of Physics
Publications
  1. S. Kim, A. Lukin, M. Rispoli, M. Tai, A. Kaufman, P. Segura, Y. Li, J. Kwan, J. Leonard, B. Bakkali-Hassani, M. Greiner, Adiabatic State Preparation in a Quantum Ising Spin Chain. ArXiv 2024.
  2. L. Su, A. Douglas, M. Szurek, A. Hebert, A. Krahn, G. Phelps, O. Markovic, M. Greiner, and R. Groth. Fast single atom imaging in optical lattice arrays. ArXiv 2024.
  3. J. Kwan, B. Bakkali-Hassani, M. Greiner, F. Grusdt, F. A. Palm, U. Schollwoeck, and N. Goldman. Growing Extended Laughlin States in a Quantum Gas Microscope: A Patchwork Construction. ArXiv 2024.
  4. M. Lebrat, M. Xu, L. Kendrick, A. Kale, Y. Gang, E. Demler, M. Greiner, P. Seetharaman, I. Morera, and E. Khatami. Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator. Nature May 2024.
  5. M. Greiner, M. Sohman, M. J. Mark, and F. Ferlaino. A ship-in-a-bottle quantum gas microscope setup for magnetic mixtures. SciPost Phys., 15(182), November 2023.
  6. L. Su, A. Douglas, M. Szurek, S.F. Ozturk, A. Krahn, A. Hebert, G. Phelps, S. Ebadi, S. Dickerson, O. Markovic, M. Greiner, R. Groth, and F. Ferlaino. Dipolar quantum solids emerging in a Hubbard quantum simulator. Nature October 2023.
  7. M. Xu, L. Kendrick, A. Kale, Y. Gang, G. Ji, M. Greiner, R. Scalettar, and N. Goldman. Doping a frustrated Fermi-Hubbard magnet. ArXiv 2023.
  8. M. Xu, L. Kendrick, A. Kale, Y. Gang, G. Ji, M. Lebrat, M. Greiner, and R. T. Scalettar. Frustration- and doping-induced magnetism in a Fermi–Hubbard simulator. Nature August 2023.
  9. D. Bluvstein, S. Evered, H. Zhou, T. Manovitz, S. Ebadi, M. Cain, M. Kalinowski, N. Maskara, I. Cong, X. Gao, G. Semeghini, M. Gullans, M. Greiner, V. Vuletic, M. Lukin, A. Geim, S. H. Li, D. Hangleiter, J. P. B. Ataides, P. S. Rodriguez, and T. Karolyshyn. Logical quantum processor based on reconfigurable atom arrays. Nature December 2023.
  10. A. Bohrdt, M. Greiner, F. Grusdt, and P. Čubela. Particle zoo in a doped spin chain: Correlated states of mesons and magnons. Phys Rev B, 107(035105), January 2023.
  11. J. Leonard, S. Kim, M. Rispoli, A. Lukin, R. Schittko, J. Kwan, E. Demler, D. Sels, M. Greiner, Probing the onset of quantum avalanches in a many-body localized system. Nature Physics , 19:pages481–485, 2023.
  12. J. Kwan, P. Segura, Y. Li, S. Kim, A. Gorshkov, B. Bakkali-Hassani, M. Greiner, and A. Eckardt. Realization of 1D Anyons with Arbitrary Statistical Phase. ArXiv 2023.
  13. D. Bluvstein, H. Levine, G. Semeghini, T. Wang, S. Ebadi, M. Kalinowski, A. Keesling Contreras, N. Maskara, H. Pichler, M. Greiner, V. Vuletic, M. Lukin, A Quantum Processor based on coherent transport of entangled atom arrays. Nature, 604:451-456, April 2022.
  14. H. Levine, D. Bluvstein, A. Keesling Contreras, T. Wang, S. Ebadi, G. Semeghini, A. Omran, M. Greiner, V. Vuletic, M. Lukin, Dispersive optical systems for scalable Raman driving of hyperfine qubits. Physical Review A, 105(032618), March 2022.
  15. S. Ebadi, A. Keesling Contreras, M. Cain, T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A. Omran, J. Liu, B. Nash, X. Gao, L. Zhou, S. Choi, H. Pichler, S. Wang, M. Greiner, V. Vuletic, M. Lukin, Rhine Samajdar, Xiu-Zhe Luo, Boaz Barak, Edward Farhi, Subir Sachdev, and Nathan Gemelke. Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays. Science May 2022.
  16. A. Kale, M. Xu, L. Kendrick, M. Lebrat, F. Grusdt, A. Bohrdt, M. Greiner, and Jakob Hendrik Huhn. Schrieffer-Wolff Transformations for Experiments: Dynamically Suppressing Virtual Doublon-Hole Excitations in a Fermi-Hubbard Simulator. ArXiv 2022.
  17. A. Bohrdt, S. Kim, A. Lukin, M. Rispoli, R. Schittko, M. Knap, M. Greiner, J. Leonard, Analyzing non-equilibrium quantum states through snapshots with artificial neural networks. Physical Review Letters, 127(150504), October 2021.
  18. D. Bluvstein, A. Omran, H. Levine, A. Keesling Contreras, G. Semeghini, S. Ebadi, T. Wang, N. Maskara, W.W. Ho, S. Choi, M. Greiner, V. Vuletic, M. Lukin, A. A. Michailidis, and M. Serbyn. Controlling many-body dynamics with driven quantum scars in Rydberg atom arrays. Science, 371(6536):1355-1359, March 2021.
  19. G. Ji, M. Xu, L. Kendrick, C. Chiu, D. Greif, A. Bohrdt, F. Grusdt, E. Demler, M. Lebrat, M. Greiner, and J.C. Bruggenjurgen. Coupling a Mobile Hole to an Antiferromagnetic Spin Backgroung: Transient Dynamics of a Magnetic Polaron. Phys. Rev. X , 11(021022), April 2021.
  20. S. Ebadi, T. Wang, H. Pichler, M. Lukin, M. Greiner, Cole Miles, Rhine Samajdar, Subir Sachdev, Kilian Q. Weinberger, and Eun-Ah Kim. Machine learning discovery of new phases in programmable quantum simulator snapshots. ArXiv 2021.
  21. G. Semeghini, H. Levine, A. Keesling Contreras, S. Ebadi, T. Wang, D. Bluvstein, H. Pichler, M. Kalinowski, A. Omran, M. Greiner, V. Vuletic, M. Lukin, Ruben Verresen, Rhine Samajdar, Subir Sachdev, and Ashvin Vishwanath. Probing Topological Spin Liquids on a Programmable Quantum Simulator. Science, 374(6572):1242-1247, December 2021.
  22. S. Ebadi, T. Wang, H. Levine, A. Keesling Contreras, G. Semeghini, A. Omran, D. Bluvstein, H. Pichler, W.W. Ho, S. Choi, M. Greiner, V. Vuletic, M. Lukin, Rhine Samajdar, and Subir Sachdev. Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator. Nature, 595:227-232, July 2021.
  23. E. Demler, M. Greiner, M. Lukin, R. Ma, K. Ni, M. Schleier-Smith, V. Vuletic, M. Zwierlein, E. Altman, and et al.. Quantum Simulators: Architectures and Opportunities. PRX Quantum, 2(017003), February 2021.
  24. A. Bohrdt, C. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, E. Demler, Classifying snapshots of the doped Hubbard model with machine learning. Nature Physics July 2019.
  25. A. Omran, H. Levine, A. Keesling Contreras, G. Semeghini, S. Ebadi, H. Bernien, A. Zibrov, H. Pichler, S. Choi, M. Endres, M. Greiner, V. Vuletic, M. Lukin, T. T. Wang, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, and T. Calarco. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science, 365(6453):570-574, August 2019.
  26. H. Levine, A. Omran, A. Keesling Contreras, H. Bernien, M. Greiner, V. Vuletic, M. Lukin, M. Endres, G. Torlai, B. Timar, E.P.L. va Nieuwenburg, and R.G. Melko. Integrating neural networks with a quantum simulator for state reconstruction. Physical Review Letters, 123(230504), December 2019.
  27. D. Kim, A. Keesling Contreras, A. Omran, H. Levine, H. Bernien, M. Greiner, M. Lukin, D. Englund, Large-Scale Uniform Optical Focus Array Generation with a Phase Spatial Light Modulator. Optics Letters 2019.
  28. D. Kim, A. Keesling Contreras, A. Omran, H. Levine, H. Bernien, M. Greiner, M. Lukin, D. Englund, Large-Scale Uniform Optical Focus Array Generation with a Phase Spatial Light Modulator,. Optics Letters, 44(12):3178-3181, 2019.
  29. H. Levine, A. Keesling Contreras, G. Semeghini, A. Omran, T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletic, H. Pichler, M. Lukin, Parallel Implementation of High-fidelity Multi-qubit Gates with Neutral Atoms. Physical Review Letters, 123(170503), October 2019.
  30. A. Lukin, M. Rispoli, R. Schittko, M. Tai, A. Kaufman, S. Choi, J. Leonard, M. Greiner, and V. Khemani. Probing entanglement in a many-body-localized system. Science April 2019.
  31. M. Rispoli, A. Lukin, R. Schittko, S. Kim, M. Tai, J. Leonard, M. Greiner, Quantum critical behavior at the many-body localization transition. Nature, 573:385–389, 2019.
  32. A. Keesling Contreras, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, M. Endres, M. Greiner, V. Vuletic, M. Lukin, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, and P. Zoller. Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 568:207–211, April 2019.
  33. S. Choi, A. Lukin, M. Tai, M. Rispoli, R. Schittko, P. Preiss, A. Kaufman, M. Greiner, H. Pichler, J. Cotler, H. Gharibyan, T. Grover, and P. Hayden. Quantum virtual cooling. Phys. Rev. X, 9(031013), 2019.
  34. C. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, D. Greif, String patterns in the doped Hubbard model. Science July 2019.
  35. H. Levine, A. Keesling Contreras, A. Omran, H. Bernien, A. Zibrov, M. Endres, M. Greiner, V. Vuletic, M. Lukin, and S. Schwartz. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Phys. Rev. Lett, 121(123603), September 2018.
  36. F. Grusdt, M. Kanasz-Nagy, A. Bohrdt, C. Chiu, G. Ji, M. Greiner, D. Greif, E. Demler, Parton theory of magnetic polarons: Mesonic resonances and signatures in dynamics. Physical Review X, 8(011046), 2018.
  37. C. Chiu, G. Ji, A. Mazurenko, D. Greif, M. Greiner, Quantum state engineering of a Hubbard system with ultracold fermions. Phys. Rev. Lett. , 20(243201), June 2018.
  38. A. Mazurenko, C. Chiu, G. Ji, M. Parsons, M. Kanasz-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, M. Greiner, A cold-atom Fermi-Hubbard antiferromagnet. Nature, 545, May 2017.
  39. H. Bernien, A. Keesling Contreras, H. Levine, A. Omran, H. Pichler, S. Choi, A. Zibrov, M. Endres, M. Greiner, V. Vuletic, M. Lukin, and S. Schwartz. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551:579-584, 2017.
  40. M. Kanasz-Nagy, F. Grusdt, D. Greif, M. Greiner, E. Demler, and I. Lovas. Quantum Correlations at infinite temperature: the dynamical Nagaoka effect. Physical Review B, 96(014303), 2017.
  41. M. Endres, H. Bernien, A. Keesling Contreras, C. Senko, V. Vuletic, M. Greiner, M. Lukin, H. Levine, E.R. Anschuetz, and A. Krajenbrink. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 375(6315), November 2016.
  42. A. Kaufman, M. Tai, A. Lukin, M. Rispoli, R. Schittko, P. Preiss, M. Greiner, Quantum thermalization through entanglement in an isolated many-body system. Science, 353:794-800, August 2016.
  43. M. Parsons, A. Mazurenko, C. Chiu, S. Blatt, F. Huber, G. Ji, M. Greiner, and D. Greif. Site-Resolved Imaging of a Fermionic Mott Insulator. Science, 351:953, 2016.
  44. M. Parsons, A. Mazurenko, C. Chiu, G. Ji, D. Greif, M. Greiner, Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science, 353(6305), September 2016.
  45. P. Preiss, R. Ma, A. Lukin, M. Tai, M. Rispoli, K. Islam, M. Greiner, Ultra-precise holographic beam shaping for microscopic quantum control. Optics Express , 24(13), 2016.
  46. R. Ma and M. Greiner. Quantum gas microscopy with spin, atom-number, and multilayer readout. Physical Review A, 91:041602, 2015.
  47. M. Parsons, F. Huber, A. Mazurenko, C. Chiu, W. Setiawan, K. Wooley Brown, S. Blatt, M. Greiner, and W. Siawan. Site-Resolved Imaging of Fermion 6Li in an Optical Lattice. Phys. Rev. Lett, 114:213002, 2015.
  48. M. Greiner and J. F. S. Brachmann. Inducing vortices in a Bose-Einstein condensate using holographically producted light beams. Optics Express, 19:12984, 2011.
  49. M. Greiner. Interaction-induced orbital excitation blockade of ultracold atoms in an optical lattice. in press 2011.
  50. M. Greiner and A. Aspect. Phase sensitive measurements of order parameters for ultracold atoms through two particles interferometry. Phys. Rev. Lett., 106:115302, 2011.
  51. M. Greiner. Photon-Assisted Tunneling in a Biased, Strongly Correlated Bose Gas. Phys. Rev. Lett., 107:095301, 2011.
  52. M. Greiner. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature, 472:307, 2011.
  53. M. Greiner and L. Poll. Probing the Superfluid-to-Mott-Instulator Transition at the Single-Atom Level. Science, 329:547, 2010.
  54. M. Greiner and A. Aspect. sensitive measurements of order parameters for uultracold atoms through two particlesinterferometry. Submitted 2010 2010.
  55. W. Bakr, J. Gillen, A. Peng, and M. Greiner. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature, 462:74-77, 2009.
  56. M. Greiner. A quantum gas microscope for imaging individual atoms in a Hubbard regime optical lattice. Nature, 462:74, 2009.
  57. M. Greiner and P. Unterwaditzer. Two-dimensional quantum gas in a hybrid surface trap. Phys. Rev. A, 80:021602, 2009.
  58. A. Gorshkov, L. Jiang, M. Greiner, M. Lukin, and P. Zoller. Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett., 100:093005, 2008.
  59. S. Foelling, M. Greiner, E. Demler, M. Lukin, A.M. Rey, and R. Sansarma. Preparation and detection of d-wave superfluidity in two dimensional optical. submitted to Nature Physics, cond.mat/0806.0166v1, 2008.
News
Mon November 18, 2024

Emergent ferromagnetic states revealed in a geometrically frustrated triangular lattice

In a material, the way electrons align their spins to form a magnetic phase strongly depends on the geometry of the crystal they inhabit. In particular, triangular lattice geometries display an effect called geometrical frustration, where up and down spins cannot all be antialigned classically. This effect is thought to give rise to complex and...
News type:
Wed October 25, 2023

Self-correcting quantum computers within reach?

Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn’t seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new...
News type:
Mon June 6, 2022

Researchers document presence of quantum spin liquids, an elusive state of matter never seen before

The Harvard-MIT CUA collaboration led by Lukin, Greiner, and Vuletic reported the first experimental realization of a quantum spin liquid, a highly entangled phase of matter that eluded experimental observation for several decades.  An example of topological state, such as a spin liquid, can help in the search for reliable quantum computers. Predicted about 50...
News type:
Thu February 27, 2020

Probing entanglement in a many-body-localized system

An interacting quantum system that is subject to disorder may cease to thermalize owing to localization of its constituents, thereby marking the breakdown of thermodynamics. The key to understanding this phenomenon lies in the system’s entanglement, which is experimentally challenging to measure. We realized such a many-body–localized system in a disordered Bose-Hubbard chain and characterized...
News type:
Thu February 27, 2020

String patterns in the doped Hubbard model

Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. We realized the Hubbard Hamiltonian and searched for specific patterns within the individual images of many realizations...
News type:
Thu February 27, 2020

Quantum critical behavior at the many-body localization transition

Phase transitions are driven by collective fluctuations of a system’s constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behaviour is described by the general theory of phase transitions. Recently, however, fundamentally distinct phase transitions have been discovered for out-of-equilibrium quantum systems,...
News type:
Thu May 2, 2019

String patterns in the doped Hubbard model

Understanding strongly correlated quantum many-body states is one of the most thought-provoking challenges in modern research. For example, the Hubbard model, describing strongly correlated electrons in solids, still contains fundamental open questions on its phase diagram. In this work we realize the Hubbard Hamiltonian and search for specific patterns within many individual images of realizations...
News type:
Fri April 19, 2019

Probing entanglement in a many-body-localized system

An interacting quantum system that is subject to disorder may cease to thermalize due to localization of its constituents, thereby marking the breakdown of thermodynamics. The key to our understanding of this phenomenon lies in the system’s entanglement, which is experimentally challenging to measure. We realize such a many-body-localized system in a disordered Bose-Hubbard chain...
News type:
Tue June 19, 2018

Markus Greiner named 2018 Vannevar Bush Faculty Fellow

The Department of Defense announced the selection of 11 distinguished faculty scientists and engineers to join the 2018 Class of Vannevar Bush Faculty Fellows (VBFF).

News type:
Thu June 14, 2018

Quantum state engineering of a Hubbard system with ultracold fermions

Accessing new regimes in quantum simulation requires the development of new techniques for quantum state preparation. We demonstrate the quantum state engineering of a strongly correlated many-body state of the two-component repulsive Fermi-Hubbard model on a square lattice. Our scheme makes use of an ultralow entropy doublon band insulator created through entropy redistribution. After isolating...
News type:
Fri September 13, 2013

Professor Markus Greiner receives the junior BEC Award 2013

A research collaboration including CUA investigators at Harvard.
News type:
Sat September 5, 2009

Bose-Einstein Condensation 2009, Frontiers in Quantum Gases, San Feliu, Spain, 05 – 11 September 2009

The BEC conference is a biannual meeting which is regarded the most prestigious and competitive conference in the field of atomic quantum gases, featuring about 45 invited presentations. Several CUA researchers presented invited talks:
Tue July 14, 2009

APS and AIP Launch Virtual Journal of Atomic Quantum Fluids

Press Release: http://www.aip.org/press_release/vj_atomic_quantum.html
News type:
Past Events
Mon May 1, 2017 12:00 am
Location:Art Gallery of Western Australia

Markus Griener collaborated on an outreach project through art with artist Julianne Swartz: “Blue Sky with Rainbow.” The installation is located at the Art Gallery of Western Australia, and is free to the public.

Prof Greiner built and installed the optical diffraction system for the installation.

Sun September 1, 2019 12:00 am
Location:Queens Public Library

Collaboration between Markus Greiner and artist Julianne Swartz opens at the Queens Public Library. It features multi-facetted lenses that project images on translucent screens; a periscope makes 180 degree fish eye view of the sky visible from inside.

Thu November 21, 2019 6:00 pm
Location:Workbar - Central Square 45 Prospect Street Cambridge, MA 02139

What exactly is Quantum Science? The Nobel Price Winner Wolfgang Ketterle and Harvard Professor Markus Greiner will break it down for you.