News: Research Highlights

Wed January 1, 2014

Time-resolved magnetic sensing with electronic spins in diamond

One of the most promising applications of quantum information is in precision metrology. In the past year we focused on magnetic sensing with NV centers in diamond, in particular focusing on techniques to extend magnetic field sensing at the nano-scale to time-dependent reconstruction of magnetic fields and spectroscopy.
News type:
Wed January 1, 2014

Quantum Interference Between Independent Reservoirs in Open Quantum Systems

When a quantum system interacts with multiple reservoirs, the environmental effects are usually treated in an additive manner. We showed that that assumption breaks down for non-Markovian environments that have finite memory times. Specifically, we demonstrated that quantum interferences between independent environments could qualitatively modify the dynamics of the physical system. We illustrated that effect...
News type:
Wed January 1, 2014

Buffer-gas loaded magneto-optical traps for Yb, Tm, Er, and Ho

Novel physics in areas like quantum information, cold controlled chemistry and precision measurements is predicted to be accessible with molecules at temperatures in the mK regime. These approaches require molecular beam sources which are unavailable at present. In particular, providing cold, slow and bright beams of a general set of molecules, ideally independent of their...
News type:
Tue January 1, 2013

Dressed-State Resonant Coupling between Bright and Dark Spins in Diamond

A critical ingredient for quantum control of atom-like and hybrid systems is a better understanding of decoherence as well as the control of many-body quantum dynamics.
News type:
Tue January 1, 2013

Phonon-induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing

We proposed and analyzed a novel mechanism for long-range spin-spin interactions in diamond nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers in diamond, were mediated by their coupling via strain to the vibrational mode of a diamond mechanical nanoresonator. That coupling resulted in phonon-mediated effective spin-spin interactions that could be used to generate...
News type:
Tue January 1, 2013

Pauli Paramagnetism of an Ideal Fermi Gas

Using the two lowest hyperfine states of a non-interacting ultracold Fermi gas of 6Li as pseudospin states, we have measured the magnetic susceptibility of such a system as a demonstration of the textbook physics of Pauli paramagnetism [1]. An imbalanced spin mixture of 6Li is trapped in the harmonic confinement potential at the focus of...
News type:
Tue January 1, 2013

Coherence and Raman Sideband Cooling of a Single Atom in an Optical Tweezer

We investigated quantum control of a single atom in a tightly focused optical tweezer trap. We showed that inevitable spatially varying polarization gave rise to significant internal-state decoherence but that the effect could be mitigated by an appropriately chosen magnetic bias field. That enabled Raman sideband cooling of a single atom close to its three-dimensional...
News type: