News: Research Highlights

Fri January 1, 2010

A Magnetic Gas

For decades, it has been an open question whether it is possible for a gas to show properties similar to a magnet made of iron or nickel.  Iron and nickel are ferromagnetic because they become strongly magnetized below a specific temperature, when unpaired electrons within the material spontaneously align in the same direction.

News type:
Fri January 1, 2010

How to win a coin game called atomic clock

If you flip a hundred coins, you are unlikely to get exactly fifty heads and fifty tails; there is a statistical uncertainty in the outcome.  Researchers at MIT have reduced the statistical uncertainty in the quantum mechanical equivalent of a coin toss.  This quantum mechanical coin toss is more than a game: its uncertainty limits the precision of one of the world’s most sensitive measurement devices, the atomic clock.  An atomic clock consists of tens of thousands of atoms, each of which can be in either of two states, much like a coin that can show either of two faces.  Each atom is placed in a quantum superposition of the two states—each coin, as it were, suspended in mid-air with the potential to land on either face.  The researchers at MIT use light to probe an ensemble of such atoms in a way that allows them to count how many atoms are “heads” without revealing the state of any individual atom—without disturbing the superposition. Thereafter, the laws of quantum mechanics demand that the count remain the same on any subsequent measurement.  Thus, while each individual coin continues to tumble at random, the tumbling of the different coins is now choreographed: as one twists towards heads, another must turn towards tails.  In the jargon of quantum mechanics, the states of the different atoms are now entangled.  When one ultimately measures the states of the individual atoms—letting the coins land—the statistical uncertainty in the outcome is reduced.  Just such a measurement is used to read out an atomic clock; if the clock is operated in an entangled state, its precision is no longer at the mercy of an ordinary coin toss.

News type:
Fri January 1, 2010

Coherent recoilless scattering of atoms

Two papers were finished recently on the subject of recoilless scattering from a gas and scattering from atoms in an optical lattice as a probe of the quantum state of the lattice.
News type:
Thu January 1, 2009

A single spin — detected again and again

Detection of single spins is an important problem in quantum science and engineering. It plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing.  Working with single particles is important to take advantage of quantum mechanical features associated with these phenomena.

News type:
Thu January 1, 2009

Global Operations for Protected Quantum Memories in Atomic Spin Lattices

G. Brennan, K. Hammerer, L. Jiang, M. D. Lukin, and P. Zoller, Global Operations for Protected Quantum Memories in Atomic Spin Lattices, in press Phys. Rev. Lett. arXiv:0901.3920, (2009).
News type:
Thu January 1, 2009

EIT in Buffer-gas Cooled Rb at 4 K

T. Hong, J.M. Doyle, M. Lukin, D. Patterson, A. Zibrov and M. Prentiss, Physical Review A accepted (2009)
News type:
Thu January 1, 2009

Strong Magnetic Coupling between an Electronic Spin Qubit and a Mechanical Resonator

P. Rabl, P. Cappellaro, G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, Strong Magnetic Coupling between an Electronic Spin Qubit and a Mechanical Resonator, Phys. Rev. B 79, 041302 (2009).
News type:
Thu January 1, 2009

Alkaline-Earth-Metal Atoms as Few Qubit Quantum Registers

Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, Alkaline-Earth-Metal Atoms as Few Qubit Quantum Registers, Phys. Rev. Lett. 102, 110503 (2009).
News type: