News: Research Highlights

Mon December 11, 2023

Quantum-computing approach uses single molecules as qubits for first time

Platforms based on molecules manipulated using ‘optical tweezers’ might be able to perform complex physics calculations. Physicists have taken the first step towards building quantum computers out of individual molecules trapped with laser devices called optical tweezers. Two teams report their results in Science on 7 December in both cases making pairs of calcium monofluoride...
News type:
Tue October 31, 2023

Building Big Quantum Computers by Connecting Smaller Ones

Building quantum computers that can function despite their inherently noisy components is a long-standing goal for physicists. Quantum error correcting codes promise to make this possible, but to use them, physicists need to carefully choreograph the interactions between large numbers of qubits. Such scaling to large numbers of qubits is generally anticipated to require connecting...
News type:
Wed October 25, 2023

Self-correcting quantum computers within reach?

Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn’t seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new...
News type:
Fri April 14, 2023

Measuring Arbitrary Physical Properties in Analog Quantum Simulation (Choi Group)

Quantum simulators—carefully engineered and programmable quantum systems—provide an exciting avenue to explore the laws of nature and to realize complex physical phenomena. However, current quantum simulators still lack the sophisticated controls needed to interrogate a prepared state in depth, limiting the information that can be extracted by measurements. Here, we propose a novel measurement protocol...
News type:
Tue April 11, 2023

Quantum Scrambling with Time-Reversal: A Powerful Tool for Exponentially Enhanced Metrology

The quantum analog of chaotic dynamics, quantum scrambling, spread quantum information exponentially fast within a quantum many-body system. Understanding how the information spread is a highly nontrivial and crucial question in the field of quantum information science (QIS). Recently, it has been theoretically argued that quantum scrambling is intimately connected with quantum metrology (QM), where...
News type:
Tue April 11, 2023

Field programmable spin arrays for scalable quantum repeaters

 In the progress report, it was noted that for “quantum computational advantage” in harnessing many-body quantum stages with spins, large scale control over thousands of spin qubits and their interaction was needed, but was limited by power consumption and cross-talk inherent in current microwave techniques. To this end, we analyzed the problem from first principles...
News type:
Wed February 15, 2023

Engineers discover a new way to control atomic nuclei as “qubits”

In principle, quantum-based devices such as computers and sensors could vastly outperform conventional digital technologies for carrying out many complex tasks. But developing such devices in practice has been a challenging problem despite great investments by tech companies as well as academic and government labs. Today’s biggest quantum computers still only have a few hundred...
News type:
Wed February 1, 2023

Physicists observe rare resonance in molecules for the first time

If she hits just the right pitch, a singer can shatter a wine glass. The reason is resonance. While the glass may vibrate slightly in response to most acoustic tones, a pitch that resonates with the material’s own natural frequency can send its vibrations into overdrive, causing the glass to shatter. Resonance also occurs at...
News type:
Tue November 22, 2022

Quantum entanglement between ultracold molecules in optical tweezer array

Molecular tweezer arrays provide a powerful and versatile platform for quantum computing and simulation applications. This is due to the long coherence time, strong dipole-dipole couplings between neighboring polar molecules, and single-site addressability in the system. Recently, by using the rotational states of single CaF molecules trapped in individual tweezers as effective qubits, we have...
News type:
Mon November 21, 2022

CUA researchers develop a new quantum processor with dynamic, nonlocal connectivity, utilizing the coherent transport of entangled atom arrays

The Harvard-MIT CUA collaboration led by Lukin, Greiner, and Vuletic reported a new architecture for quantum information processing using the coherent transport of neutral atoms in an optical tweezer array. This new processor has the unique capability of dynamic, nonlocal connectivity, enabling new types of quantum computations where any two qubits can be entangled, even...
News type: