News: Research Highlights

Mon June 6, 2022

Researchers document presence of quantum spin liquids, an elusive state of matter never seen before

The Harvard-MIT CUA collaboration led by Lukin, Greiner, and Vuletic reported the first experimental realization of a quantum spin liquid, a highly entangled phase of matter that eluded experimental observation for several decades.  An example of topological state, such as a spin liquid, can help in the search for reliable quantum computers. Predicted about 50...
News type:
Wed March 9, 2022

Physicists steer chemical reactions by magnetic fields and quantum interference

Physicists in the MIT-Harvard Center for Ultracold Atoms (CUA) have developed a new approach to control the outcome of chemical reactions. This is traditionally done using temperature and chemical catalysts, or more recently with external fields (electric or magnetic fields, or laser beams). MIT CUA physicists have now added a new twist to this: They...
News type:
Thu February 3, 2022

Reversing time for quantum-enhanced metrology

The group of Prof. Vuletic, at MIT, demonstrated that reversing the time in an atomic sensor can lead to a strongly enhanced sensitivity. With this time-reversal protocol, sensors can be operated with highly-entangled states which carry large statistical information close to the fundamental Heisenberg Limit.  Due to their fragility, these “superior” quantum states are extremely...
News type:
Thu February 3, 2022

Searching for dark matter by probing an ultranarrow optical transition in Ytterbium

The Vuletic ion lab at MIT has been searching for new dark matter candidates by measuring small shifts between atomic transition frequencies in different isotopes of Ytterbium. Measuring shifts on at least two transitions allows the researchers to plot the data in a “King Plot”, which can reveal the presence of both higher-order nuclear physics...
News type:
Wed January 26, 2022

Vibrating atoms make robust qubits, physicists find

MIT physicists have discovered a new quantum bit, or “qubit,” in the form of vibrating pairs of atoms known as fermions. They found that when pairs of fermions are chilled and trapped in an optical lattice, the particles can exist simultaneously in two states — a weird quantum phenomenon known as superposition. In this case, the atoms held a superposition of two vibrational states, in which the pair wobbled against each other while also swinging in sync, at the same time.

The team was able to maintain this state of superposition among hundreds of vibrating pairs of fermions. In so doing, they achieved a new “quantum register,” or system of qubits, that appears to be robust over relatively long periods of time. The discovery, published today in the journal Nature, demonstrates that such wobbly qubits could be a promising foundation for future quantum computers.

News type:
Wed January 12, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes

The new observations record a key crossover from classical to quantum behavior.

Mon December 20, 2021

Sensor based on quantum physics could detect SARS-CoV-2 virus

A novel approach to testing for the presence of the virus that causes Covid-19 may lead to tests that are faster, less expensive, and potentially less prone to erroneous results than existing detection methods. Though the work, based on quantum effects, is still theoretical, these detectors could potentially be adapted to detect virtually any virus,...
News type:
Mon November 22, 2021

How ultracold, superdense atoms become invisible

An atom’s electrons are arranged in energy shells. Like concertgoers in an arena, each electron occupies a single chair and cannot drop to a lower tier if all its chairs are occupied. This fundamental property of atomic physics is known as the Pauli exclusion principle, and it explains the shell structure of atoms, the diversity...
Fri January 22, 2021

Unraveling The Mysteries Of Time With Scientists From MIT

Turns out you don’t need to be a nuclear physicist to understand a new breakthrough in atomic timekeeping.

News type:
Mon December 21, 2020

Ultracold atoms reveal a new type of quantum magnetic behavior

The findings may help researchers design “spintronic” devices and novel magnetic materials.