News

Wed September 25, 2013

Scientists create never-before-seen form of matter

Wolfgang Ketterle, the John D. MacArthur Professor of Physics, was awarded a prize for graduate education for his courses 8.421 (Atomic and Optical Physics) and 8.422 (Atomic and Optical Physics II).
News type:
Fri September 13, 2013

Professor Markus Greiner receives the junior BEC Award 2013

A research collaboration including CUA investigators at Harvard.
News type:
Thu July 4, 2013

MIT researchers build an all-optical transistor

To recognize and encourage outstanding research in Atomic, Molecular and Optical Physics by investigators who have held a Ph. D. for 10 years or less. The prize consists of $7,500 and a certificate citing the contributions made by the recipient. An allowance will be provided for travel expenses of the recipient to the Society meeting...
News type:
Mon April 1, 2013

Matthew Nichols wins NDSEG Fellowship

The Navy’s Office of Naval Research (ONR) has named Martin Zwierlein, an MIT assistant professor of physics, as one of its 17 new Young Investigators.
News type:
Tue January 15, 2013

The Willis E. Lamb Award for Laser Science and Quantum Optics awarded to Susanne Yelin

This meeting will celebrate Professor Daniel Kleppner’s career of fundamental contributions in physics. An outstanding list of invited speakers will present the most recent and interesting topics in atomic physics.
News type:
Tue January 1, 2013

Progress on Laser Cooling of CaF

The internal structure and the long-range dipole-dipole interactions of ultracold polar molecules open new avenues in studying physics such as the quantum simulation of strongly correlated Hamiltonians, ultracold controlled chemistry or precision measurements. At present, a reliable general method to produce an ultracold sample of molecules is desired, but not available. The goal of this...
News type:
Tue January 1, 2013

Spin-Orbit Suppression of Cold Inelastic Collisions of Aluminum and Helium

Cold collisions between atoms play a critical role in much of atomic physics, being responsible for few-body interactions, thermalization, trap loss and decoherence.  The development of a detailed understanding of collisions is therefore crucial to the continued expansion of the field into new atomic systems, an expansion that has already led to the discovery of...
News type:
Tue January 1, 2013

Beyond Universal Long-Range van der Waals Interactions with Ultracold 6Li2 Molecules

We have found that collisional loss of ultracold 6Li2 molecules can be determined by physics beyond universal long-range van der Waals interactions [1]. Starting with a degenerate Fermi gas of 6Li produced by sympathetic cooling with bosonic 23Na, we form Li2 molecules by a magnetic field sweep around a narrow Feshbach resonance. The resulting molecules...
News type:
Tue January 1, 2013

Non-Equilibrium Fractional Quantum Hall State of Light

We investigated the quantum dynamics of systems, which involved small numbers of strongly interacting photons. Specifically, we developed an efficient method to investigate such systems when they were externally driven with a coherent field. Furthermore, we showed how to quantify the many-body quantum state of light via correlation functions. Finally, we applied that method to...
News type:
Tue January 1, 2013

Stretchable Photonic Crystal Cavity with Wide Frequency Tunability

We reported a new approach for the realization of a flexible photonic crystal (PC) cavity that enabled wide-range tuning of its resonance frequency. Our PC cavity consisted of a regular array of silicon nanowires embedded in a polydimethylsiloxane (PDMS) matrix and exhibited a cavity resonance in the telecommunication band that could be reversibly tuned over...
News type: