News

Tue January 1, 2013

All-Optical Switch and Transistor Gated by One Stored Photon

In this paper we demonstrate an all-optical switch gated by one stored photon. Using an atomic ensemble trapped inside an optical cavity, we store a photon incident transverse to the cavity in the atomic ensemble, thereby changing the state of one atom. This atom then blocks the cavity for photons incident along the cavity axis....
News type:
Tue January 1, 2013

Single-photon Nonlinear optics with Graphene Plasmons

We showed that it was possible to realize significant nonlinear optical interactions at the few photon level in graphene nanostructures. Our approach took advantage of the electric field enhancement associated with the strong confinement of graphene plasmons and the large intrinsic nonlinearity of graphene. Such a system could provide a powerful platform for quantum nonlinear...
News type:
Tue January 1, 2013

Phonon-induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing

We proposed and analyzed a novel mechanism for long-range spin-spin interactions in diamond nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers in diamond, were mediated by their coupling via strain to the vibrational mode of a diamond mechanical nanoresonator. That coupling resulted in phonon-mediated effective spin-spin interactions that could be used to generate...
News type:
Tue January 1, 2013

Coherence and Raman Sideband Cooling of a Single Atom in an Optical Tweezer

We investigated quantum control of a single atom in a tightly focused optical tweezer trap. We showed that inevitable spatially varying polarization gave rise to significant internal-state decoherence but that the effect could be mitigated by an appropriately chosen magnetic bias field. That enabled Raman sideband cooling of a single atom close to its three-dimensional...
News type:
Tue January 1, 2013

Timekeeping with Electronic Spin States in Diamond

Frequency standards based on atomic states, such as Rb or Cs vapors, or single-trapped ions, are the most precise measures of time. We proposed and analyzed a precision oscillator approach based upon spins in a solid-state system, in particular, the nitrogen-vacancy defect in single-crystal diamond. We showed that that system could have stability that approached...
News type:
Tue January 1, 2013

Nanometer-scale Thermometry in a Living Cell

Sensitive probing of temperature variations on nanometre scales is an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of subdegree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool in many areas of biological, physical...
News type:
Tue January 1, 2013

Keldysh Approach for Non-equilibrium Phase Transitions in Quantum Optics: Beyond the Dicke Model in Optical Cavities

We investigated nonequilibrium phase transitions for driven atomic ensembles interacting with a cavity mode and coupled to a Markovian dissipative bath. In the thermodynamic limit and at low frequencies, we showed that the distribution function of the photonic mode was thermal, with an effective temperature set by the atom-photon interaction strength. That behavior characterized the...
News type:
Tue January 1, 2013

A Quantum Network of Clocks

The development of precise atomic clocks has led to many scientific and technological advances that play an increasingly important role in modern society. Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision...
News type:
Tue January 1, 2013

Single-photon Nonlinearities in Two-mode Optomechanics

We presented a detailed theoretical analysis of a weakly driven, multimode optomechanical system, in which two optical modes were strongly and near-resonantly coupled to a single mechanical mode via a three-wave mixing interaction. We calculated one- and two-time intensity correlations of the two optical fields and compared them to analogous correlations in atom-cavity systems. Nonclassical...
News type:
Tue January 1, 2013

Non-Equilibrium Fractional Quantum Hall State of Light

We investigated the quantum dynamics of systems, which involved small numbers of strongly interacting photons. Specifically, we developed an efficient method to investigate such systems when they were externally driven with a coherent field. Furthermore, we showed how to quantify the many-body quantum state of light via correlation functions. Finally, we applied that method to...
News type: