News

Tue January 1, 2013

Spin-Orbit Suppression of Cold Inelastic Collisions of Aluminum and Helium

Cold collisions between atoms play a critical role in much of atomic physics, being responsible for few-body interactions, thermalization, trap loss and decoherence.  The development of a detailed understanding of collisions is therefore crucial to the continued expansion of the field into new atomic systems, an expansion that has already led to the discovery of...
News type:
Tue January 1, 2013

Beyond Universal Long-Range van der Waals Interactions with Ultracold 6Li2 Molecules

We have found that collisional loss of ultracold 6Li2 molecules can be determined by physics beyond universal long-range van der Waals interactions [1]. Starting with a degenerate Fermi gas of 6Li produced by sympathetic cooling with bosonic 23Na, we form Li2 molecules by a magnetic field sweep around a narrow Feshbach resonance. The resulting molecules...
News type:
Tue January 1, 2013

Quantum Logic between Remote Quantum Registers

We considered two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we reviewed the notion of eigenmode-mediated unpolarized spin-chain state transfer and extended the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yielded a natural optimal...
News type:
Tue January 1, 2013

Single-photon Nonlinearities in Two-mode Optomechanics

We presented a detailed theoretical analysis of a weakly driven, multimode optomechanical system, in which two optical modes were strongly and near-resonantly coupled to a single mechanical mode via a three-wave mixing interaction. We calculated one- and two-time intensity correlations of the two optical fields and compared them to analogous correlations in atom-cavity systems. Nonclassical...
News type:
Tue January 1, 2013

Stretchable Photonic Crystal Cavity with Wide Frequency Tunability

We reported a new approach for the realization of a flexible photonic crystal (PC) cavity that enabled wide-range tuning of its resonance frequency. Our PC cavity consisted of a regular array of silicon nanowires embedded in a polydimethylsiloxane (PDMS) matrix and exhibited a cavity resonance in the telecommunication band that could be reversibly tuned over...
News type:
Tue January 1, 2013

Non-Equilibrium Fractional Quantum Hall State of Light

We investigated the quantum dynamics of systems, which involved small numbers of strongly interacting photons. Specifically, we developed an efficient method to investigate such systems when they were externally driven with a coherent field. Furthermore, we showed how to quantify the many-body quantum state of light via correlation functions. Finally, we applied that method to...
News type:
Tue January 1, 2013

Quantum Nonlinear Optics: Strongly Interacting Photons

Quantum-optics researchers have been trying to achieve strong inter­actions between individual photons for decades. These interactions constitute a fundamental tool toward the ultimate control of light fields “quantum by quantum.” They can be used to realize deterministic two-qubit optical gates for scalable quantum computing and to produce highly correlated states for high-precision measurements. Also, they...
News type:
Tue January 1, 2013

Coupling of a Single Trapped Atom to a Nanoscale Optical Cavity

In this paper in collaboration with the Lukin group, we demonstrate for the first time deterministic coupling of a trapped atom to a nanophotonic resonator. For details see Lukin’s report.
News type:
Tue January 1, 2013

Phonon-induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing

We proposed and analyzed a novel mechanism for long-range spin-spin interactions in diamond nanostructures. The interactions between electronic spins, associated with nitrogen-vacancy centers in diamond, were mediated by their coupling via strain to the vibrational mode of a diamond mechanical nanoresonator. That coupling resulted in phonon-mediated effective spin-spin interactions that could be used to generate...
News type:
Tue September 4, 2012

Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi gas

Wolfgang Ketterle, the John D. MacArthur Professor of Physics, was awarded a prize for graduate education for his courses 8.421 (Atomic and Optical Physics) and 8.422 (Atomic and Optical Physics II).
News type: