People: Geoffrey Ji

Graduate Student
Publications
  1. M. Xu, L. Kendrick, A. Kale, Y. Gang, G. Ji, M. Greiner, R. Scalettar, and N. Goldman. Doping a frustrated Fermi-Hubbard magnet. ArXiv 2023.
  2. M. Xu, L. Kendrick, A. Kale, Y. Gang, G. Ji, M. Lebrat, M. Greiner, and R. T. Scalettar. Frustration- and doping-induced magnetism in a Fermi–Hubbard simulator. Nature August 2023.
  3. G. Ji, M. Xu, L. Kendrick, C. Chiu, D. Greif, A. Bohrdt, F. Grusdt, E. Demler, M. Lebrat, M. Greiner, and J.C. Bruggenjurgen. Coupling a Mobile Hole to an Antiferromagnetic Spin Backgroung: Transient Dynamics of a Magnetic Polaron. Phys. Rev. X , 11(021022), April 2021.
  4. A. Bohrdt, C. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, and E. Demler. Classifying snapshots of the doped Hubbard model with machine learning. Nature Physics July 2019.
  5. C. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, and D. Greif. String patterns in the doped Hubbard model. Science July 2019.
  6. F. Grusdt, M. Kanasz-Nagy, A. Bohrdt, C. Chiu, G. Ji, M. Greiner, D. Greif, and E. Demler. Parton theory of magnetic polarons: Mesonic resonances and signatures in dynamics. Physical Review X, 8(011046), 2018.
  7. C. Chiu, G. Ji, A. Mazurenko, D. Greif, and M. Greiner. Quantum state engineering of a Hubbard system with ultracold fermions. Phys. Rev. Lett. , 20(243201), June 2018.
  8. A. Mazurenko, C. Chiu, G. Ji, M. Parsons, M. Kanasz-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner. A cold-atom Fermi-Hubbard antiferromagnet. Nature, 545, May 2017.
  9. M. Parsons, A. Mazurenko, C. Chiu, S. Blatt, F. Huber, G. Ji, M. Greiner, and D. Greif. Site-Resolved Imaging of a Fermionic Mott Insulator. Science, 351:953, 2016.
  10. M. Parsons, A. Mazurenko, C. Chiu, G. Ji, D. Greif, and M. Greiner. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science, 353(6305), September 2016.
News
Mon November 18, 2024

Emergent ferromagnetic states revealed in a geometrically frustrated triangular lattice

In a material, the way electrons align their spins to form a magnetic phase strongly depends on the geometry of the crystal they inhabit. In particular, triangular lattice geometries display an effect called geometrical frustration, where up and down spins cannot all be antialigned classically. This effect is thought to give rise to complex and...
News type:
Thu May 2, 2019

String patterns in the doped Hubbard model

Understanding strongly correlated quantum many-body states is one of the most thought-provoking challenges in modern research. For example, the Hubbard model, describing strongly correlated electrons in solids, still contains fundamental open questions on its phase diagram. In this work we realize the Hubbard Hamiltonian and search for specific patterns within many individual images of realizations...
News type:
Thu June 14, 2018

Quantum state engineering of a Hubbard system with ultracold fermions

Accessing new regimes in quantum simulation requires the development of new techniques for quantum state preparation. We demonstrate the quantum state engineering of a strongly correlated many-body state of the two-component repulsive Fermi-Hubbard model on a square lattice. Our scheme makes use of an ultralow entropy doublon band insulator created through entropy redistribution. After isolating...
News type: