People: Michael Knap

Postdoctoral Fellow
Publications
  1. A. Bohrdt, S. Kim, A. Lukin, M. Rispoli, R. Schittko, M. Knap, M. Greiner, J. Leonard, Analyzing non-equilibrium quantum states through snapshots with artificial neural networks. Physical Review Letters, 127(150504), October 2021.
  2. E. Demler, M. Knap, R. Citro, T. Giamarchi, and E. Orignac. Lattice modulation spectroscopy of one-dimensional quantum gases: Universal scaling of the absorbed energy. Phys. Rev. Research, 2(033187), 2020.
  3. A. Bohrdt, E. Demler, M. Knap, F. Grusdt, and F. Pollmann. Parton theory of angle-resolved photoemission spectroscopy spectra in antiferromagnetic Mott insulators. Phys. Rev. B , 102(035139), July 2020.
  4. A. Bohrdt, E. Demler, M. Knap, F. Grusdt, and F. Pollman. Parton theory of ARPES spectra in antiferromagnetic Mott insulators. Phys. Rev. B, 102(035139), 2020.
  5. J. You, R. Schmidt, M. Knap, E. Demler, and D. Ivanov. Atomtronics with a spin: Statistics of spin transport and nonequilibrium orthogonality catastrophe in cold quantum gases. Phys. Rev. B, 99(214505), 2019.
  6. C. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F. Grusdt, M. Greiner, D. Greif, String patterns in the doped Hubbard model. Science July 2019.
  7. R. Schmidt, M. Knap, J. You, M. Cetina, E. Demler, and D. A. Ivanov. Universal many-body response of heavy impurities coupled to a Fermi sea. Rep. Prog. Phys., 81(024401), January 2018.
  8. K. Agarwal, E. Demler, M. Knap, E. Altman, S. Gopalakrishnan, and D. Huse. Rare region effects and dynamics near the many-body localization transition. Annalen Der Physik, 1600326, January 2017.
  9. M. Babadi, M. Knap, E. Demler, I. Martin, and G. Refael. The theory of parametrically amplified electron-phonon superconductivity. Phys Rev B, 96(014512), July 2017.
  10. M. Knap, M. Babadi, E. Demler, G. Refael, and I. Martin. Dynamical Cooper pairing in non-equilibrium electron-phonon systems. Phys Rev B, 94(214504), December 2016.
  11. S. Gopalakrishnan, K. Agarwal, E. Demler, M. Knap, and D. Huse. Griffiths effects and slow dynamics in nearly many-body localized systems. Phys Rev B, 93(134206), April 2016.
  12. S. Gopalakrishnan, M. Knap, E. Demler, Regimes of heating and dynamical response in driven many-body localized systems. Phys Rev B, 94(094201), 2016.
  13. M. Knap, E. Demler, Piro Smacchia, and Alessandro Silva. Exploring dynamical phase transitions and prethermalization with quantum noise of excitations. Physical Review B, 91:205136, 2015.
  14. M. Babadi, E. Demler, and M. Knap. Far-from-equilibrium field theory of many-body quantum spin systems: Prethermalization and relaxation of spin spiral states in three dimensions. Phys. Rev. X, 1504:05956, 2015.
  15. K. Agarwal, S. Gopalakrishnan, M. Knap, E. Demler, and M. Muller. Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition. Phys. Rev. Lett., 114:160401, 2014.
  16. M. Knap, E. Demler, Sebastian Hild, Takeshi Fukuhara, Per Schaufl, Johannes Zeiher, I. Bloch, and Christian Gross. Far-from-Equilibrium Spin Transport in Heisenberg Quantum Magnets. Phys. Rev. Lett., 113:147205, 2014.
  17. S. Gopalakrishnan, M. Knap, E. Demler, M. Mueller, Vedika Khemani, and D. Huse. Low-frequency conductivity in many-body localized systems. Phys. Rev. B, 1502:07712, 2014.
  18. M. Knap, J.D. Sau, and B.I. Halperin. Transport in Two-Dimensional Disordered Semimetals. Physical Review Letters, 113:186801, 2014.
  19. M. Knap, E. Berg, and M. Ganahl. Clustered Wigner crystal phases of cold polar molecules in arrays of one-dimensional tubes. Phys. Rev. B, 86:064501, 2012.
  20. M. Knap, C. Mathy, and M. Zvonarev. Quantum flutter versus Bloch oscillations in one-dimensional quantum liquids out of equilibrium. Submitted 2012.
  21. M. Knap, D. Abanin, Y. Nishida, and A. Imambekov. Time dependent impurity in ultracold fermions: orthogonality catastrophe and beyond. Phys. Rev. X, 2:041020, 2012.
News
Thu May 2, 2019

String patterns in the doped Hubbard model

Understanding strongly correlated quantum many-body states is one of the most thought-provoking challenges in modern research. For example, the Hubbard model, describing strongly correlated electrons in solids, still contains fundamental open questions on its phase diagram. In this work we realize the Hubbard Hamiltonian and search for specific patterns within many individual images of realizations...
News type: