People: Soonwon Choi

Assistant Professor of Physics
Publications
  1. J. Choi, D. Mark, S. Choi, M. Endres, A. Shaw, Z. Chen, P. Scholl, R. Finkelstein, and A. Elben. Benchmarking highly entangled states on a 60-atom analogue quantum simulator. Nature, 628, 2024.
  2. I. Cong, N. Maskara, H. Pichler, G. Semeghini, S. Yelin, S. Choi, and M.C. Tran. Enhancing Detection of Topological Order by Local Error Correction. Nature Communications 2024.
  3. X. Gao, M. Kalinowski, M. Lukin, S. Choi, Chi-Ning Chou, and Boaz Barak. Limitations of Linear Cross-Entropy as a Measure for Quantum Advantage. PRX Quantum February 2024.
  4. S. Saul Pilatowsky-Cameo, W.W. Ho, S. Choi, and C. Dag. Complete Hilbert-Space Ergodicity in Quantum Dynamics of Generalized Fibonacci Drives. Phys Rev Lett, 131(250401), December 2023.
  5. L. Martin, H. Zhou, N. Leitao, N. Maskara, O. Makarova, H. Gao, Q.-Z. Zhu, H. Park, S. Choi, M. Lukin, M. Park, and M. Tyler. Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble. Phys Rev Lett, 130(210403), March 2023.
  6. Z. Li, S. Colombo, C. Shu, G. Velez, S. Choi, M. Lukin, E. Pedrozo-Peñafiel, V. Vuletic, S. Pilatowsky-Cameo, and R. Schmied. Improving metrology with quantum scrambling. Science, 380(6652):1381-1384, June 2023.
  7. J. Ramette, V. Vuletic, W.W. Ho, S. Choi, J. Y. Lee, and M. A. Metlitski. Landau-Forbidden Quantum Criticality in Rydberg Quantum Simulators. Phys Rev Lett, 131(083601), August 2023.
  8. K. Rezai, S. Choi, M. Lukin, and A. Sushkov. Probing dynamics of a two-dimensional dipolar spin ensemble using single qubit sensor. ArXiv 2022.
  9. S. Ebadi, A. Keesling Contreras, M. Cain, T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A. Omran, J. Liu, B. Nash, X. Gao, L. Zhou, S. Choi, H. Pichler, S. Wang, M. Greiner, V. Vuletic, M. Lukin, Rhine Samajdar, Xiu-Zhe Luo, Boaz Barak, Edward Farhi, Subir Sachdev, and Nathan Gemelke. Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays. Science May 2022.
  10. M. Kalinowski, M. Lukin, S. Choi, Rhine Samajdar, Roger G. Melko, and Subir Sachdev. Bulk and Boundary Quantum Phase Transitions in a Square Rydberg Atom Array. ArXiv December 2021.
  11. D. Bluvstein, A. Omran, H. Levine, A. Keesling Contreras, G. Semeghini, S. Ebadi, T. Wang, N. Maskara, W.W. Ho, S. Choi, M. Greiner, V. Vuletic, M. Lukin, A. A. Michailidis, and M. Serbyn. Controlling many-body dynamics with driven quantum scars in Rydberg atom arrays. Science, 371(6536):1355-1359, March 2021.
  12. N. Maskara, W.W. Ho, D. Bluvstein, S. Choi, M. Lukin, Alexios A. Michailidis, and Maksym Serbyn. Discrete time-crystalline order enabled by quantum many-body scars: entanglement steering via periodic driving. PhysRevLett, 127(090602), August 2021.
  13. S. Ebadi, T. Wang, H. Levine, A. Keesling Contreras, G. Semeghini, A. Omran, D. Bluvstein, H. Pichler, W.W. Ho, S. Choi, M. Greiner, V. Vuletic, M. Lukin, Rhine Samajdar, and Subir Sachdev. Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator. Nature, 595:227-232, July 2021.
  14. L. Zhou, S. Wang, S. Choi, H. Pichler, and M. Lukin. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-term Devices. Physics Rev X, 10(021067), June 2020.
  15. H. Zhou, J. Choi, S. Choi, R. Landig, P. Cappellaro, H. Knowles, H. Park, M. Lukin, A. Douglas, J. Isoya, F. Jelezko, S. Onoda, and H. Sumiya. Quantum Metrology with Strongly Interacting Spin Systems. Phys. Rev. X, 10(031003), 2020.
  16. J. Choi, H. Zhou, H. Knowles, R. Landig, S. Choi, and M. Lukin. Robust Dynamic Hamiltonian Engineering of Many-Body Spin Systems. Phys. Rev. X, 10(031002), 2020.
  17. S. Choi, H. Pichler, W.W. Ho, M. Lukin, D. Abanin, J. Turner, A.A. Michailidis, Z. Papic, and M. Serbyn. Emergent SU(2) dynamics and perfect quantum many-body scars. Phys. Rev. Lett., 122(220603), June 2019.
  18. A. Omran, H. Levine, A. Keesling Contreras, G. Semeghini, S. Ebadi, H. Bernien, A. Zibrov, H. Pichler, S. Choi, M. Endres, M. Greiner, V. Vuletic, M. Lukin, T. T. Wang, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, and T. Calarco. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science, 365(6453):570-574, August 2019.
  19. W.W. Ho, S. Choi, H. Pichler, and M. Lukin. Periodic Orbits, Entanglement and Quantum Many-body scars in constrained models: Matrix product state approach. Phys. Rev. Lett January 2019.
  20. A. Lukin, M. Rispoli, R. Schittko, M. Tai, A. Kaufman, S. Choi, J. Leonard, M. Greiner, and V. Khemani. Probing entanglement in a many-body-localized system. Science April 2019.
  21. J. Choi, H. Zhou, S. Choi, R. Landig, W.W. Ho, D. Abanin, M. Lukin, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, and Hitoshi Sumiya. Probing quantum thermalization of a disordered dipolar spin ensemble with discrete time-crystalline order. Phys. Rev. Lett, 122(043603), February 2019.
  22. A. Keesling Contreras, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, M. Endres, M. Greiner, V. Vuletic, M. Lukin, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, and P. Zoller. Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 568:207–211, April 2019.
  23. S. Choi, A. Lukin, M. Tai, M. Rispoli, R. Schittko, P. Preiss, A. Kaufman, M. Greiner, H. Pichler, J. Cotler, H. Gharibyan, T. Grover, and P. Hayden. Quantum virtual cooling. Phys. Rev. X, 9(031013), 2019.
  24. S. Choi, H. Pichler, M. Lukin, R. Samajdar, and S. Sachdev. Numerical study of the chiral Z3 quantum phase transition in one spatial dimension. Physical Review A, 97(023614), August 2018.
  25. I. Cong, S. Choi, and M. Lukin. Quantum Convolutional Neural Networks. ArXiv 2018.
  26. H. Bernien, A. Keesling Contreras, H. Levine, A. Omran, H. Pichler, S. Choi, A. Zibrov, M. Endres, M. Greiner, V. Vuletic, M. Lukin, and S. Schwartz. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551:579-584, 2017.
  27. S. Choi, N. Yao, and M. Lukin. Quantum metrology based on strongly correlated matter. ArXiv 2017.
News
Tue November 26, 2024

Maximum Entropy Principle in Deep Thermalization and in Hilbert-Space Ergodicity

The dynamics of systems consisting of many particles are very complicated and practically impossible to predict. For such systems, statistical physics has proven extremely useful, making highly accurate predictions for both quantum and classical systems. The central assumption behind statistical physics is the maximum entropy principle: A generic system reaches a state with maximum entropy,...
News type:
Wed November 20, 2024

Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and Designs

Many-body quantum systems reach thermal equilibrium due to a property called quantum ergodicity. Despite its conceptual significance, there is no general definition of quantum ergodicity that is universally applicable to all scenarios. In quantum systems whose description remains unchanged with time, quantum ergodicity is defined through the system’s stationary configurations — certain states that do not...
News type:
Thu October 19, 2023

Harvard-MIT CUA Receives Major Renewal Grant

The U.S. National Science Foundation’s Physics Frontiers Centers program renewed a grant to the MIT-Harvard Center for Ultracold Atoms (CUA) to fund exploring, understanding, and harnessing mysterious phenomena at the frontiers of physics. The CUA, which works to enable greater control and programmability of quantum-entangled systems of low-temperature atoms and molecules, will conduct experiments involving...
Fri April 14, 2023

Measuring Arbitrary Physical Properties in Analog Quantum Simulation (Choi Group)

Quantum simulators—carefully engineered and programmable quantum systems—provide an exciting avenue to explore the laws of nature and to realize complex physical phenomena. However, current quantum simulators still lack the sophisticated controls needed to interrogate a prepared state in depth, limiting the information that can be extracted by measurements. Here, we propose a novel measurement protocol...
News type:
Mon November 14, 2022

Benchmarking quantum devices based on fingerprints of quantum chaos

We have developed a new method to quantify the performance of analog quantum simulators, using insights from quantum chaos.  The state fidelity quantifies the closeness of two quantum states. While theoretically simple, the fidelity is difficult to measure in experiments since most conventional approaches require sophisticated controls not accessible in existing devices. CUA researchers and...
News type:
Mon November 14, 2022

Quantum Mechanics Intertwines Symmetries: how to study deconfined quantum criticality using analog quantum simulators

With rapid advances in our experimental capability to perform quantum simulations, it is also important to ask what interesting physical phenomena we would like to explore. One interesting direction is the realization of deconfined quantum criticality (DQC), a concept central to the modern understanding of various quantum phase transitions yet experimentally unobserved phenomena. In conventional...
News type: