People: Wolfgang Ketterle

John D. MacArthur Professor of Physics
Publications
  1. P. Barral, M. Cantara, J.Hond, Y. Lu, and W. Ketterle. Atomic physics on a 50 nm scale: Realization of a bilayer system of dipolar atoms. Science, 384:546-551 , 2024.
  2. P. Barral, M. Cantara, L. Du, W. Lunden, J.Hond, A. Jamison, and W. Ketterle. Suppressing dipolar relaxation in thin layers of dysprosium atoms.. Nature Communications , 15(3566), 2024.
  3. J. Park, Y. Lu, A. Jamison, T. Tscherbul, and W. Ketterle. A Feshbach resonance in collisions between triplet ground state molecules. Nature, 614(5458), 2023.
  4. J. Park, H. Son, Y. Lu, A. Jamison, W. Ketterle, T. Karman, M. Gronowski, and M. Tomza. Ab initio calculation of the spectrum of Feshbach resonances in NaLi + Na collisions. Phys. Rev. A , 108(023309), 2023.
  5. L. Du, P. Barral, M. Cantara, J.Hond, Y. Lu, and W. Ketterle. Atomic physics on a 50 nm scale: Realization of a bilayer system of dipolar atoms. ArXiv 2023.
  6. Y. Lu, Y. Margalit, and W. Ketterle. Bosonic stimulation of atom–light scattering in an ultracold gas. Nature Physics , 19:210-214, 2023.
  7. P. Barral, M. Cantara, L. Du, W. Lunden, J.Hond, A. Jamison, and W. Ketterle. Can the dipolar interaction suppress dipolar relaxation?. ArXiv 2023.
  8. W. Ketterle, K. Geier, G. Martone, P. Hauke, and S. Stringari. Dynamics of Stripe Patterns in Supersolid Spin-Orbit-Coupled Bose Gases. Phys Rev Lett, 130(156001), 2023.
  9. J. Park, Y. Lu, A. Jamison, and W. Ketterle. Magnetic trapping of ultracold molecules at high density. Nature Physics, 19, 2023.
  10. I. Dimitrova, Y. K. Lee, H. Lin, J. Amato-Grill, P. Jepsen, W. Ketterle, S. Flannigan, I. Čepaitė, and A. Daley. Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms. Quantum Science and Technology , 8(035018), 2023.
  11. Y. Bao, S. Yu, J. You, L. Anderegg, E. Chae, W. Ketterle, K. Ni, and J. Doyle. Raman sideband cooling of molecules in an optical tweezer array to the 3-D motional ground state. ArXiv 2023.
  12. J. Park, H. Son, Y. Lu, A. Jamison, W. Ketterle, T. Karman, M. Gronowski, and M. Tomza. Spectrum of Feshbach resonances in NaLi + Na collisions. Phys. Rev. X, 13(031018), August 2023.
  13. Y. K. Lee, H. Lin, and W. Ketterle. Spin Dynamics Dominated by Resonant Tunneling into Molecular States. Phys Rev Lett, 131(213001), November 2023.
  14. H. Son, J. Park, Y. Lu, A. Jamison, W. Ketterle, and Tijs Karman. Control of reactive collisions by quantum interference. Science, 375(6584), March 2022.
  15. Y. Bao, S. Yu, L. Anderegg, E. Chae, W. Ketterle, K. Ni, and J. Doyle. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. ArXiv 2022.
  16. Y. Bao, S. Yu, L. Anderegg, S. Burchesky, D. Gonzalez-Acevedo, E. Chae, W. Ketterle, K. Ni, and J. Doyle. Fast optical transport of ultracold molecules over long distances. ArXiv 2022.
  17. P. Jepsen, Y. K. Lee, H. Lin, I. Dimitrova, Y. Margalit, W.W. Ho, and W. Ketterle. Long-lived spin-helix states in Heisenberg quantum magnets. Nature Physics, 18, 2022.
  18. J.Hond, J. Xiang, W. Chung, E. Cruz Colon, W. Chen, W. Burton, C. Kennedy, and W. Ketterle. Preparation of the spin-Mott state: A spinful Mott insulator of repulsively bound pairs. PhysRevLett, 128(093401), February 2022.
  19. Y. Lu, Y. Margalit, and W. Ketterle. Observation of bosonic stimulation in light scattering. ArXiv 2021.
  20. Y. Margalit, Y. Lu, F. Top, and W. Ketterle. Pauli blocking of light scattering in degenerate fermions. Science, 374(6570):976-979, 2021.
  21. S. Burchesky, L. Anderegg, Y. Bao, S. Yu, E. Chae, W. Ketterle, K. Ni, and J. Doyle. Rotational Coherence Times of Polar Molecules in Optical Tweezers. Phys. Rev. Lett., 127(123202), September 2021.
  22. F. Top, Y. Margalit, and W. Ketterle. Spin-polarized fermions with p-wave interactions. Phys Rev A, 104(043311), October 2021.
  23. P. Jepsen, W.W. Ho, J. Amato-Grill, I. Dimitrova, E. Demler, and W. Ketterle. Transverse Spin Dynamics in the Anisotropic Heisenberg Model Realized with Ultracold Atoms. Physical Review X, 11(041054), 2021.
  24. W. Ketterle, A. Venegas-Gomez, J. Schachenmayer, A.S. Buyskikh, M.L. Chiofalo, and A. J. Daley. Adiabatic preparation of entangled, magnetically ordered states with cold bosons in optical lattices. Quantum Sci. Technol., 5(045013), 2020.
  25. W. Ketterle and A. Jamison. An atomic physics perspective on the kilogram’s new definition. Physics Today73, (5):32, May 2020.
  26. H. Son, J. Park, W. Ketterle, and A. Jamison. Collisional Cooling of Ultracold Atoms. Nature, 580(197), April 2020.
  27. W. Ketterle, A. Venegas-Gomez, A.S Buyskikh, J. Schachenmayer, and A.J. Daley. Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices.. Phys. Rev. A, 102(023321), 2020.
  28. I. Dimitrova, P. Jepsen, J. Amato-Grill, W. Ketterle, A. Buyskikh, A. Venegas-Gomez, and A. Daley. Enhanced Superexchange in a Tilted Mott Insulator. Physical Review Letters, 124(043204), January 2020.
  29. W. Lunden, L. Du, M. Cantara, P. Barral, A. Jamison, and W. Ketterle. Enhancing the capture velocity of a Dy magneto-optical trap with two-stage slowing. Physical Review A, 101(063403), June 2020.
  30. W. Ketterle, F. Scazza, G. Valtolina, A. Amico, P.E.S. Tavares, M. Inguscio, G. Roati, and M. Zaccanti. Exploring emergent heterogeneous. Physical Review A, 101(013603), October 2020.
  31. J. Amato-Grill, W. Ketterle, T. Secker, and S. Kokkelmans. High-precision analysis of Feshbach resonances in a Mott insulator. Physical Review A, 101(04270), April 2020.
  32. L. Cheuk, L. Anderegg, Y. Bao, S. Burchesky, W. Ketterle, K. Ni, J. Doyle, and Scarlett Yu. Observation of Collisions between Two Ultracold Ground-State CaF Molecules. ArXiv January 2020.
  33. L. Cheuk, L. Anderegg, Y. Bao, S. Burchesky, S. Yu, W. Ketterle, K. Ni, and J. Doyle. Observation of Collisions between Two Ultracold Ground-State CaF Molecules. Physical Review Letters, 125(043401), July 2020.
  34. P. Jepsen, J. Amato-Grill, I. Dimitrova, W.W. Ho, E. Demler, and W. Ketterle. Spin transport in a tunable Heisenberg model realized with ultracold atoms. Nature, 588:403–407, December 2020.
  35. L. Anderegg, L. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K. Ni, and J. Doyle. An Optical Tweezer Array of Ultracold Molecules. ArXiv 2019.
  36. L. Anderegg, L. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K. Ni, and J. Doyle. An optical tweezer array of ultracold molecules. Science, 365(6458):1156-1158, September 2019.
  37. J. Li, B. Shteynas, and W. Ketterle. Floquet Heating in Interacting Atomic Gases with an Oscillating Force. Physical Review A, 100(033406), September 2019.
  38. B. Shteynas, J. Lee, F. Top, J. Li, A. Jamison, W. Ketterle, and G. Juzeliūnas. How to dress radio-frequency photons with tunable momentum. Physical Review Letters, 123(033203), July 2019.
  39. J. Amato-Grill, P. Jepsen, I. Dimitrova, W. Lunden, and W. Ketterle. Interaction spectroscopy of a two-component Mott insulator. Phys Rev. A, 99(033612), 2019.
  40. L. Anderegg, B.L. Augenbraun, Y. Bao, S. Burchesky, L. Cheuk, W. Ketterle, and J. Doyle. Laser Cooling of Optically Trapped Molecules. Nature, 14:890–893, 2018.
  41. W. Ketterle, A. Amico, F. Scazza, G. Valtolina, P. E. S. Tavares, M. Inguscio, G. Roati, and M. Zaccanti. Time-Resolved Observation of Competing Attractive and Repulsive Short-Range Correlations in Strongly Interacting Fermi Gases. Phys. Rev. Lett, 121, 2018.
  42. L. Cheuk, L. Anderegg, B.L. Augenbraun, Y. Bao, S. Burchesky, W. Ketterle, and J. Doyle. Λ-Enhanced Imaging of Molecules in an Optical Trap. Phys. Rev. Lett, 121(083201), August 2018.
  43. J. Li, J. Lee, W. Huang, B. Shteynas, F. Top, A. Jamison, W. Ketterle, and S. Burchesky. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature, 543(91), March 2017.
  44. T. Rvachov, H. Son, A. Sommer, J. Park, M. Zwierlein, W. Ketterle, A. Jamison, and S. Ebadi. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments. Phys. Rev. Lett. October 2017.
  45. E. Chae, L. Anderegg, B.L. Augenbraun, A. Ravi, B. Hemmerling, N. Hutzler, W. Ketterle, J. Doyle, A. Collopy, and J. Ye. One dimensional magneto-optical compression of a cold CaF molecular beam. New Journal of Physics, 19(033035), March 2017.
  46. L. Anderegg, B.L. Augenbraun, E. Chae, B. Hemmerling, N. Hutzler, A. Ravi, W. Ketterle, J. Doyle, A. Collopy, and J. Ye. Radio Frequency Magneto-Optical Trapping of CaF with High Density. Phys. Rev. Lett. , 119(103201), September 2017.
  47. W. Ketterle. Twenty years of Atomic Quantum Gases: 1995-2015 in: “Universal Themes of Bose-Einstein Condensation. Cambridge University Press, editors: N.P. Proukakis, D.W. Snoke, and P.B. Littlewood edition, April 2017.
  48. W. Burton, C. Kennedy, W. Chung, W. Chen, W. Ketterle, and S. Vadia. Coherence Times of Bose-Einstein Condensates beyond the Shot-Noise Limit via Superfluid Shielding. Phys. Rev. Lett., 116(275301), December 2016.
  49. B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. Drayna, N. Hutzler, W. Ketterle, J. Doyle, A.L. Collopy, and J. Ye. Laser slowing of CaF molecules to near the capture velocity of a molecular MOT. Journal of Physics B: Atomic, Molecular and Optical Physics 2016.
  50. J. Li, W. Huang, B. Shteynas, F. Top, E. Su, J. Lee, A. Jamison, and W. Ketterle. Spin-Orbit Coupling and Spin Textures in Optical Superlattices. Phys. Rev. Lett. , 117(185301), October 2016.
  51. H. Miyake, W. Ketterle, J. Schachenmayer, and A.J. Daley. Adiabatic cooling of bosons in lattices to magnetic ordering. Phys. Rev. A, 1503:07466, 2015.
  52. W. Ketterle and A. Kesh. A distributed, graphical user interface based, computer control system for atomic physics experiments. Rev. Sci. Instrum., 84:015105, 2013.
  53. W. Ketterle and J. Doyle. Cold Collisions of helium and thorium monoxide in the electronic excited H-state. preprint 2013.
  54. W. Ketterle and M.-S. Heo. Deviation from Universality in Collisions of Ultracold 6Li2 Molecules. Phys. Rev. Lett., 110:173203, 2013.
  55. W. Ketterle. Pauli paramagnetism of an ideal Fermi gas. Phys. Rev. A, 87:043629, 2013.
  56. W. Ketterle and J. Doyle. Spin-orbit effects in cold inelastic collisions of antimony and helium. Submitted 2013.
  57. W. Ketterle and J. Doyle. Vibrational quenching in cold thorium monoxide (X, v=1)-helium collisions. preprint 2013.
  58. W. Ketterle and J. Doyle. Zeeman relaxation in cold collisions of thorium and helium. preprint 2013.
  59. W. Ketterle and M.-S. Heo. Compressibility of an ultracold Fermi gas with repulsive interactions. Phys. Rev. A, 85:063615, 2012.
  60. W. Ketterle and M.-S. Heo. Formation of Ultracold Fermionic NaLi Feshbach Molecules. Phys. Rev. A, 86:021602, 2012.
  61. W. Ketterle. Bragg Scattering as a Probe of Atomic Wavefunctions and Quantum Phase Transitions in Optical Lattices. PHys. Rev. Letter, 107:175302, 2011.
  62. W. Ketterle and A. Kesh. Correlations and Pair Formation in a Repulsively Interacting Fermi Gas. Phys. Rev. Lett., 108:240404, 2011.
  63. W. Ketterle and A. Kesh. Speckle Imaging of Spin Fluctuations in a Strongly Interacting Fermi Gas. Phys. Rev. Lett., 106:010402, 2011.
  64. W. Ketterle. Spin gradient demagnetization cooling of ultracold atoms.. Phys. Rev. Lett., 106:195301, 2011.
  65. W. Ketterle, J. Doyle, and S. C. Dor. Large spin relaxation rates in trapped submerged-shell atoms. Phys. Rev. A, 81:010702, 2010.
  66. W. Ketterle and A. Kesh. Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas. Phys. Rev. Lett., 105:040402, 2010.
  67. W. Ketterle. Thermometry and Refrigeration in a Two-Component Mott Insulator of Ultracold Atoms.. Phys. Rev. A, 82:051603, 2010.
  68. C. Doret, C. Connolly, W. Ketterle, and J. Doyle. A Buffer-Gas Cooled Bose-Einstein Condensate. Phys. Rev. Lett., 103:103005, 2009.
  69. T. Kim, W. Ketterle, and J.H. Thywissen. Itinerant ferromagnetism in a Fermi gas of ultracold atoms. Science, 325:1521-1524, 2009.
  70. G. Jo, Y. Lee, J. Choi, C. Christensen, T. Kim, D. Pritchard, W. Ketterle, and J.H. Thywissen. Observation of itinerant ferromagnetism in a strongly interacting Fermi gas of ultracold atoms. Science, 325:1521, 2009.
  71. W. Ketterle. Spin gradient thermometry of ultracold atoms in optical lattices. Phys. Rev. Lett., 103:245301, 2009.
  72. W. Ketterle and C. H. Schunk. Superfluidity in a gas of strongly interacting fermions. World Scientific, Book Chapter on ?50 Years of BCS Theory? in print, 2009.
  73. C. Schunck, Y. Shin, A. Schirotzek, and W. Ketterle. Determination of the fermion pair size in a resonantly interacting superfluid. Nature, 454:739-743, 2008.
  74. A. Schirotzek, Y. Shin, C. Schunck, and W. Ketterle. Determination of the Superfluid Gap in Atomic Fermi Gases by Quasiparticle Spectroscopy. Phys. Rev. Lett., 101:140403, 2008.
  75. M. Zwierlein and W. Ketterle. Making, probing and understanding ultracold Fermi gases. Ultracold Fermi Gases, Proceedings of the International School of Physics Enrico Fermi,, Course CLXIV Varenna 20 - 30 June 2006 eds.:M. Inguscio, W. Ketterle, and C. Salomon (Amsterdam, IOS Press, 2008); e-print: arXiv: 0801.2500, 2008.
  76. W. Ketterle. New forms of matter near absolute zero temperature. In: Digital Excellence, eds. P.J.J. Welfens, E. Walther-Klaus, Springer (Berlin), 7-11, 2008.
  77. Y. Shin, C. Schunck, A. Schirotzek, and W. Ketterle. Phase diagram of a two-component Fermi gas with resonant interactions. Nature, 451:689-693, 2008.
  78. Y. Shin, A. Schirotzek, C. Schunck, and W. Ketterle. Realization of a strongly interacting Bose-Fermi mixture from a two-component Fermi gas. Phys. Rev. Lett., 101:070404, 2008.
  79. C. Christensen, S. Will, G. Jo, Y. Shin, W. Ketterle, D. Pritchard, and M. Saba. Trapping of Ultracold Atoms in a Hollow-core Photonic Crystal Fiber. Phys. Rev. A, 78:033429, 2008.
  80. M. Boyd, P. Medley, G. Campbell, J. Mun, W. Ketterle, D. Pritchard, and E. W. Streed. Atom trapping with a thin magnetic film. Phys. Rev. A (Atomic, Molecular, and Optical Physics), 76:043624-5, 2007.
  81. D. Miller, J. Chin, W. Setiawan, C. Sanner, W. Ketterle, and C.A. Stan. Critical velocity for superfluid flow across the BEC-BCS crossover. Phys. Rev. Lett., 99:70402, 2007.
  82. W. Ketterle and Y. Shin. Fermi gases go with the superfluid flow. Physics World, June:39-43, 2007.
  83. W. Ketterle. Ganz groe Fische fangen. Entreprenuer by Ernst & Young, 1/2007:66-68, 2007.
  84. W. Ketterle and Gerhard Rempe. Herbert Walther (obituary).. Physics Today, June:78, 2007.
  85. G. Jo, Y. Shin, S. Will, T. Pasquini, W. Ketterle, D. Pritchard, M. Saba, and Mukund Vengalattore. Long Phase Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip. Phys. Rev. Lett., 98:30407, 2007.
  86. G. Jo, J. Choi, C. Christensen, Y. Lee, T. Pasquini, W. Ketterle, and D. Pritchard. Matter-Wave Interferometry with Phase Fluctuating Bose-Einstein Condensates. Phys. Rev. Lett., 99:240406, 2007.
  87. W. Ketterle. New forms of quantum matter near absolute zero temperature. International Journal of Modern Physics D, 16:2413-2419, 2007.
  88. W. Ketterle. New forms of quantum matter near absolute zero temperature. International Journal of Modern Physics D, 16:2413-2419, 2007.
  89. C. Schunck, Y. Shin, A. Schirotzek, M. Zwierlein, and W. Ketterle. Pairing Without Superfluidity: The Ground State of an Imbalanced Fermi Mixture. Science, 316:867-870, 2007.
  90. J. Mun, P. Medley, G. Campbell, D. Pritchard, W. Ketterle, and L. G. Marcassa. Phase Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice. Phys. Rev. Lett., 99:150604, 2007.
  91. G. Jo, J. Choi, C. Christensen, T. Pasquini, Y. Lee, W. Ketterle, and D. Pritchard. Phase-Sensitive Recombination of Two Bose-Einstein condensates on an Atom Chip. Phys. Rev. Lett., 98:180401, 2007.
  92. C. Doret, W. Ketterle, J. Doyle, and J.G.E. Harris. Spin-Exchange Collisions of Submerged Shell Atoms Below 1 Kelvin. Phys. Rev. Lett., 99:223201, 2007.
  93. C. Schunck, M. Zwierlein, A. Schirotzek, and W. Ketterle. Superfluid Expansion of a Rotating Fermi Gas. Phys. Rev. Lett., 98:050404, 2007.
  94. Y. Shin, C. Schunck, A. Schirotzek, and W. Ketterle. Tomographic RF Spectroscopy of a Trapped Fermi Gas at Unitarity. Phys. Rev. Lett., 99:90403, 2007.
  95. W. Ketterle. Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles. eds. James Evans, Alan S. Thorndike,, Springer Berlin:159-183, 2006.
  96. M. Zwierlein and W. Ketterle. Comment on Pairing and Phase Separation in a Polarized Fermi Gas. Science, 314:54a, 2006.
  97. J. Mun, M. Boyd, G. Campbell, P. Medley, W. Ketterle, D. Pritchard, and E. W. Streed. Continuous and Pulsed Quantum Zeno Effect. Phys. Rev. Lett., 97:260402, 2006.
  98. M. Zwierlein, C. Schunck, A. Schirotzek, and W. Ketterle. Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases. Nature, 442:54-58, 2006.
  99. J. Chin, D. Miller, W. Setiawan, C. Sanner, K. Xu, W. Ketterle, and C.A. Stan. Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice. Nature, 443:961-964, 2006.
  100. W. Ketterle, Vitaly. V. Kocharovsky, Vitaly V. Kocharovsky, M. Holthaus, C. H. Raymond Ooi, A. A. Svidzinsky, and M. O. Scully. Fluctuations in Ideal and Interacting Bose-Einstein Condensates: From the laser phasetransition analogy to squeezed states and Bogoliubov quasiparticles. Advances in Atomic, Molecular and Optical Physics, 53:291, 2006.
  101. T. Pasquini, G. Jo, Y. Shin, W. Ketterle, D. Pritchard, M. Saba, T. A. Savas, and N. Mulders. Low Velocity Quantum Reflection of Bose-Einstein Condensates. Phys. Rev. Lett., 97:093201, 2006.
  102. K. Xu, D. Miller, J. Chin, W. Setiawan, and W. Ketterle. Observation of Strong Quantum Depletion in a Gaseous Bose-Einstein Condensate. Phys. Rev. Lett., 96:180405, 2006.
  103. W. Ketterle, J. Doyle, S.C. Dor, and R. Michniak. Evaporative cooling of metastable helium in the multi-partial-wave regime. Phys. Rev. A, 72:060703(R), 2005.
  104. W. Ketterle, J. Doyle, J.S. Helton, and K. Maussang. High-flux beam source for cold, slow atoms or molecules. Physical Review A, 71:025602, 2005.
  105. W. Ketterle, J. Doyle, J.S. Helton, and K. Maussang. Magnetic trapping of an atomic Mn-Cr mixture. Phys Rev A, 71:025602, 2005.
News
Mon November 18, 2024

A Conveyor Belt MOT of Diatomic Molecules

Ultracold molecules provide a powerful and versatile platform for quantum computing,simulation, and metrology applications. The cornerstone technique for generating these cold, dense samples of molecular gasses is the magneto-optical trap (MOT). Conventional molecular MOTs use red-detuned light, limiting them to relatively high temperatures and low densities, leading to small spatial overlap and low loading efficiency...
News type:
Fri May 3, 2024

Physicists arrange atoms in extremely close proximity

Proximity is key for many quantum phenomena, as interactions between atoms are stronger when the particles are close. In many quantum simulators, scientists arrange atoms as close together as possible to explore exotic states of matter and build new quantum materials. They typically do this by cooling the atoms to a stand-still, then using laser...
News type:
Mon December 11, 2023

Quantum-computing approach uses single molecules as qubits for first time

Platforms based on molecules manipulated using ‘optical tweezers’ might be able to perform complex physics calculations. Physicists have taken the first step towards building quantum computers out of individual molecules trapped with laser devices called optical tweezers. Two teams report their results in Science on 7 December in both cases making pairs of calcium monofluoride...
News type:
Thu October 19, 2023

Harvard-MIT CUA Receives Major Renewal Grant

The U.S. National Science Foundation’s Physics Frontiers Centers program renewed a grant to the MIT-Harvard Center for Ultracold Atoms (CUA) to fund exploring, understanding, and harnessing mysterious phenomena at the frontiers of physics. The CUA, which works to enable greater control and programmability of quantum-entangled systems of low-temperature atoms and molecules, will conduct experiments involving...
Wed February 1, 2023

Physicists observe rare resonance in molecules for the first time

If she hits just the right pitch, a singer can shatter a wine glass. The reason is resonance. While the glass may vibrate slightly in response to most acoustic tones, a pitch that resonates with the material’s own natural frequency can send its vibrations into overdrive, causing the glass to shatter. Resonance also occurs at...
News type:
Tue November 22, 2022

Quantum entanglement between ultracold molecules in optical tweezer array

Molecular tweezer arrays provide a powerful and versatile platform for quantum computing and simulation applications. This is due to the long coherence time, strong dipole-dipole couplings between neighboring polar molecules, and single-site addressability in the system. Recently, by using the rotational states of single CaF molecules trapped in individual tweezers as effective qubits, we have...
News type:
Wed March 9, 2022

Physicists steer chemical reactions by magnetic fields and quantum interference

Physicists in the MIT-Harvard Center for Ultracold Atoms (CUA) have developed a new approach to control the outcome of chemical reactions. This is traditionally done using temperature and chemical catalysts, or more recently with external fields (electric or magnetic fields, or laser beams). MIT CUA physicists have now added a new twist to this: They...
News type:
Mon November 22, 2021

How ultracold, superdense atoms become invisible

An atom’s electrons are arranged in energy shells. Like concertgoers in an arena, each electron occupies a single chair and cannot drop to a lower tier if all its chairs are occupied. This fundamental property of atomic physics is known as the Pauli exclusion principle, and it explains the shell structure of atoms, the diversity...
Mon December 21, 2020

Ultracold atoms reveal a new type of quantum magnetic behavior

The findings may help researchers design “spintronic” devices and novel magnetic materials.

Mon July 20, 2020

Controlled Collisions of Exactly two Ultracold Molecules

One of the fundamental questions in the study of ultracold polar molecules is “what happens when two molecules collide at ultracold temperatures?” Knowing whether the molecules undergo chemical reactions, form long lived complexes, change internal state, or bounce off each other carries important implications which will guide future research directions. Our recent experiment explores this...
News type:
Wed April 8, 2020

New “refrigerator” super-cools molecules to nanokelvin temperatures

For years, scientists have looked for ways to cool molecules down to ultracold temperatures, at which point the molecules should slow to a crawl, allowing scientists to precisely control their quantum behavior. This could enable researchers to use molecules as complex bits for quantum computing, tuning individual molecules like tiny knobs to carry out multiple...
News type:
Thu February 27, 2020

Laser-cooling and Optical Trapping of Diatomic Molecules

Ultracold molecules have been proposed as a rich resource for many applications ranging from precision measurements and quantum metrology to quantum simulation and quantum information processing. The benefits of molecules in all these applications arise from the many internal degrees of freedom in a molecule. For example, even with the simplest diatomic molecules, one has...
News type:
Sat September 1, 2018

Laser-cooling and Optical Trapping of Diatomic Molecules

Ultracold molecules have been proposed as a rich resource for many applications ranging from precision measurements and quantum metrology to quantum simulation and quantum information processing. The benefits of molecules in all these applications arise from the many internal degrees of freedom in a molecule. For example, even with the simplest two-atom diatomic molecules, one...
News type:
Wed January 20, 2016

CUA researchers selected as 2015 Highly Cited Researcher by Thomson Reuters

Thomson Reuters published their 2015 list of Highly Cited Researchers.  It includes 8 physicists at Harvard and MIT, three of which are CUA researchers (Misha Lukin, Martin Zwierlein, Wolfgang Ketterle).
News type:
Mon August 31, 2015

School of Science announces 2015 Teaching Prizes for Graduate and Undergraduate Education

Wolfgang Ketterle, the John D. MacArthur Professor of Physics, was awarded a prize for graduate education for his courses 8.421 (Atomic and Optical Physics) and 8.422 (Atomic and Optical Physics II).
News type:
Sat March 27, 2010

Honorary Membership in Deutscher Hochschulverband for Wolfgang Ketterle

Investment in high-power fiber laser technology for industrial processing and military applications has enabled commercial lasers with hundreds of Watts of diffraction-limited output to come to market. These lasers are ideal pump sources for high-power (10s to 100s of Watts), widely tunable optical parametric oscillators which may be tuned from the visible to the mid-infrared...
News type:
Fri September 18, 2009

Magnetism observed in a gas for the first time

The 19th ICOLS conference takes place June 8-12 in Hokkaido, Japan, with CUA representation. Vladan Vuletic will report on a joint MIT-Harvard CUA experiment with Mikhail Lukin on switching of light with light using pulses containing only a few hundred photons. For a readable explanation of how to make light interact with light see the...
News type:
Sat September 5, 2009

Bose-Einstein Condensation 2009, Frontiers in Quantum Gases, San Feliu, Spain, 05 – 11 September 2009

The BEC conference is a biannual meeting which is regarded the most prestigious and competitive conference in the field of atomic quantum gases, featuring about 45 invited presentations. Several CUA researchers presented invited talks:
Tue July 14, 2009

APS and AIP Launch Virtual Journal of Atomic Quantum Fluids

Press Release: http://www.aip.org/press_release/vj_atomic_quantum.html
News type:
Past Events
Wed January 27, 2016 7:00 pm
Location:SUNY, Geneseo
GENESEO, N.Y. – The 2001 Nobel Laureate in physics, Wolfgang Ketterle, will deliver the 2016 Robert “Duke” Sells lecture in physics Jan. 27 at 7 p.m. in Newton Hall Room 202. Ketterle, the John D. MacArthur Professor of Physics at the Massachusetts Institute of Technology, will address “The Coolest Use of Light – How to Make...
Fri September 29, 2017 12:00 am
Location:Muse in Trento
If you cool matter at extremely low temperatures very strange things happen: for example, a banana or a flower can become dangerous blunt weapons, and objects levitate. Magic? No, just physics: Nobel Prize laureate Wolfgang Ketterle proved it during the spectacular evening event that closed the rich program of Researchers’ Night, on stage at Muse on September 29.
Fri May 4, 2018 2:00 pm
Location:MIT Papplardo Room (4-349)
Cheng Chin, University of Chicago
Richard Fletcher, MIT
Sandro Stringari, University of Trento

Please join us for an afternoon of talks by internal CUA speakers and specially invited outside speakers to celebrate the 20th anniversary of the discovery of Feshbach resonances.

Talks will discuss the history from theory to realization as well as  Feshbach resonances in various experimental applications

Reception to follow.

Event type:
Thu September 13, 2018 12:00 am
Location:Cambridge
On September 13 in CAMBRIDGE, MA, USA, the 2018 Ig Nobel Prizes, honoring achievements that first make people laugh, and then think, were awarded at Harvard University’s historic Sanders Theatre tonight before 1,100 spectators in a ceremony filled with paper airplanes, hearts, and ten-trillion dollar bills. This was the 28th First Annual Ig Nobel Prize...
Mon May 20, 2019 4:00 pm
Location:10-250
On May 20, the definitions for the units of mass, charge, temperature and mole will change.  This is a major change in the international system of units, eliminating all man-made objects from these definitions.  This talk will provide some historical background and motivation for defining fundamental base units.  However, the main focus of the talk...
Sun June 30, 2019 12:00 am

Professor Wolfgang Ketterle participated in the 2019 Nobel Laureate Meetings.

Thu November 21, 2019 6:00 pm
Location:Workbar - Central Square 45 Prospect Street Cambridge, MA 02139

What exactly is Quantum Science? The Nobel Price Winner Wolfgang Ketterle and Harvard Professor Markus Greiner will break it down for you.

Fri November 13, 2020 12:00 am
Location:Munich (virtual)
Professor Wolfgang Ketterle participated in the MIT Club of Germany in 2020, teaching high school teachers about BEC.