People: Isaac L. Chuang

Associate Professor of Electrical Engineering and Associate Professor of Physics
  1. X. Shi, S. Todaro, G. Mintzer, I. Chuang, C. D. Bruzewicz, and J. Chiaverini. Ablation loading of barium ions into a surface-electrode trap. Applied Physics Letters, 122(264002), June 2023.
  2. K. DeBry, J. Sinanan-Singh, I. Chuang, C. Bruzewicz, D. Reens, M. Kim, M. P. Roychowdhury, R. McConnell, and J. Chiaverini. Experimental Quantum Channel Discrimination Using Metastable States of a Trapped Ion. Phys Rev Lett, 131(170602), October 2023.
  3. Z. Rossi, I. Chuang, John M. Martyn, and Andrew Tan. A grand unification of quantum algorithm. PRX Quantum, 2(040203), 2021.
  4. A. Dutt, I. Chuang, E. Pednault, Chai Wah Wu, Sarah Sheldon, John Smolin, and Lev Bishop. Active Learning of Quantum System Hamiltonians yields Query Advantage. ArXiv 2021.
  5. I. Chuang, D. T. C. Allcock, W. C. Campbell, J. Chiaverini, E. R. Hudson, I. D. Moore, A. Ransford, C. Roman, J. M. Sage, and D. J. Wineland. omg blueprint for trapped ion quantum computing with metastable states. Appl. Phys. Lett. , 119(214002), 2021.
  6. Z. Rossi, I. Chuang, Quantum hypothesis testing with group structure. Phys. Rev. A, 104(012425), July 2021.
  7. J. Stuart, I. Chuang, R. Panock, C.D. Bruzewicz, J.A. Sedlacek, R. McConnell, J.M. Sage, and J. Chiaverini. Chip-Integrated Voltage Sources for Control of Trapped Ions. Phys. Rev. Applied, 11(024010), 2019.
  8. R. Rines, I. Chuang, and Kevin Obenland. Empirical determination of the simulation capacity of a near-term quantum computer. ArXiv 2019.
  9. I. Chuang, Michael F. O'Keeffe, Lior Horesh, John F. Barry, and Danielle A. Braje. Hamiltonian engineering with constrained optimization for quantum sensing and control. New J. Phys, 21(023015), 2019.
  10. I. Chuang, Catherine Medlock, Alan Oppenheim, and Qi Ding. Operating Characteristics for Binary Hypothesis Testing in Quantum Systems. Annual Allerton Conference on Communication, Control, and Computing (Allerton), 1136-1145, 2019. IEEE.
  11. Y. Niu, I. Chuang, and Sirui Lu. Optimizing QAOA: Success Probability and Runtime Dependence on Circuit Depth. ArXiv 2019.
  12. R. Rines, I. Chuang, Thomas Monz, Daniel Nigg, Matthias F. Brandl, and Philipp Schindler. Realization of a scalable Shor algorithm. Science, 351:6277, 2016.
  13. A. Eltony, D. Gangloff, M. Shi, A. Bylinskii, V. Vuletic, I. Chuang, Technologies for trapped-ion quantum information systems. Quantum Information Processing , 15, December 2016.
  14. G. Low and I. Chuang. Quantum Imaging by Coherent Enhancement. Physical Review Letters, 114:100801, 2015.
  15. G. Low and I. Chuang. Fixed-Point Quantum Search with an Optimal Number of Queries. Physical Review Letters A, 113:210501, 2014.
  16. I. Chuang, H. Park, and Jing Kong. Motional heating in a graphene-coated ion trap. Nano Lett, 14 (10):5712-5716, 2014.
  17. X. Chen, B. Zeng, and I. Chuang. Nonbinary codeword-stabilized quantum codes. Physical Review A - Atomic, Molecular, and Optical Physics, 78:6, 2014.
  18. G. Low and I. Chuang. Optimal arbitrarily accurate composite pulse sequences. Physical Review A, 89:022341, 2014.
  19. G. Low and I. Chuang. Quantum inference on Bayesian networks. Physical Review A, 89:062315, 2014.
  20. B. Zeng, X. Chen, and I. Chuang. Semi-Clifford operations, structure of C k hierarchy, and gate complexity for fault-tolerant quantum computation. Physical Review A, 77:042313, 2014.
  21. X. Chen, B. Zeng, I. Chuang, and A.W. Cross. Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit. Physical Review A - Atomic, Molecular, and Optical Physics, 78:1, 2014.
  22. I. Chuang and Jungsang Kim. Surface-electrode point Paul trap. Physical Review A, 82:04312, 2014.
  23. C. Chudzicki, I. Chuang, and Jeffrey H. Shapiro. Deterministic and cascadable conditional phase gate for photonic qubits. Physical Review A atomic, molecular, and optical physics, 87:042325, 2013.
  24. R. Clark, I. Chuang, Z. Lin, and Kenan S. Diab. A cryogenic surface-electrode elliptical ion trap for quantum simulation. Journal of Applied Physics, 109:7, 2011.
  25. I. Chuang. Finite-geometry models of electric field noise from patch potentials in ion traps. Phys. Rev. A, 84:053425, 2011.
  26. I. Chuang and Nathan S. Lachenmyer. Laser-induced charging of microfabricated ion traps. J. Appl. Phys., 110:104901, 2011.
  27. M. Shi, Y. Ge, M. Cetina, and I. Chuang. Microfabricated surface ion trap on a high-finesse optical mirror. Opt. Lett., 36:3045-3047, 2011.
  28. I. Chuang. Surface-electrode ion trap with integrated light source. Appl. Phys. Lett., 98:214103, 2011.
  29. X. Chen, B. Zeng, I. Chuang, Zheng-Cheng Gu, and Xiao-Gang Wen. Tensor product representation of a topological ordered phase: Necessary symmetry conditions. Phys. Rev. B, 82:165119, 2010.
  30. R. Clark, I. Chuang, Tongyan Lin, and K.R. Brown. A Two-Dimensional Lattice Ion Trap for Quantum Simulation. J. Appl. Phys., 105:013114, 2009.
  31. V. Vuletic, I. Chuang, and J. Labaziewicz. Cavity Sideband Cooling of a Single Trapped Ion. Phys. Rev. Lett., 102:103001, 2009.
  32. X. Chen, B. Zeng, B. Yoshida, I. Chuang, and Zheng-Cheng Gu. Gapped Two-body Hamiltonian Whose Unique Ground State is Universal for One-Way Quantum Computation. Phys. Rev. Lett., 102:220501, 2009.
  33. S. Wang, Y. Ge, I. Chuang, J. Labaziewicz, and R. Shewmon. Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. App. Phys. Lett., 94:094103, 2009.
  34. B. Zeng, X. Chen, and I. Chuang. Semi-Clifford operations, structure of Ck hierarchy, and gate complexity for fault-tolerant quantum computation. Phys. Rev. A, 77:042313, 2008.
  35. Y. Ge, P. Antohi, D. Leibrandt, I. Chuang, J. Labaziewicz, and K.R. Brown. Suppression of Heating Rates in Cryogenic Surface-Electrode Ion Traps.. Phys. Rev. Lett., 100:13001, 2008.
  36. M. Cetina, A. Grier, I. Chuang, V. Vuletic, and J. Campbell. Bright Source of Cold Ions for Surface-Electrode Traps.. Phys. Rev. A, 76:41401, 2007.
  37. I. Chuang, J. Labaziewicz, Philip Richerme, K.R. Brown, and Kazuhiro Hayasaka. Compact, filtered diode laser system for precision Spectroscopy.. Opt. Lett., 32:572-574, 2007.
  38. D. Leibrandt, R. Clark, P. Antohi, W. Bakr, I. Chuang, J. Labaziewicz, and K.R. Brown. Laser Ablation Loading of a Surface-Electrode Ion Trap.. Phys. Rev. A, 76:55403, 2007.
  39. R. Clark, I. Chuang, K.R. Brown, J. Labaziewicz, and P. Richerme. Loading and Characterization of a Printed-Circuit-Board Atomic Ion Trap.. Phys. Rev. A, 75:15401, 2007.
  40. B. Zeng, I. Chuang, and A.W. Cross. Local Unitary Versus Local Clifford Equivalence of Stabilizer and Graph States. Phys. Rev. A, 75:32325, 2007.
  41. I. Chuang, D. Bacon, and A. W. Harrow. Efficient Quantum Circuits for Schur and Clebsch-Gordon Transforms. Phys. Rev. Lett., 97:179592, 2006.
  42. D. Leibrandt, W. Bakr, I. Chuang, C. E. Pearson, W. J. Mallard, and K.R. Brown. Experimental investigation of planar ion traps. Phys. Rev. A, 73:32307, 2006.
  43. I. Chuang, H.B. Heersche, Z. de Groot, J.A. Folk, L.P. Kouwenhoven, H.S.J. van der Zant, A.A. Houck, and J. Labaziewicz. Kondo effect in the presence of magnetic impurities. Phys. Rev. Lett., 96:017205, 2006.
  44. R. Clark, I. Chuang, and K.R. Brown. Limitations of quantum simulation examined by simulating a pairing hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett., 97:050504, 2006.
  45. B. Zeng, I. Chuang, and A.W. Cross. Transversality versus Universality for Additive quantum codes. preprint: arXiv:0706.1382 2006.
Thu October 19, 2023

Harvard-MIT CUA Receives Major Renewal Grant

The U.S. National Science Foundation’s Physics Frontiers Centers program renewed a grant to the MIT-Harvard Center for Ultracold Atoms (CUA) to fund exploring, understanding, and harnessing mysterious phenomena at the frontiers of physics. The CUA, which works to enable greater control and programmability of quantum-entangled systems of low-temperature atoms and molecules, will conduct experiments involving...
Tue September 8, 2009

Synopsis on the APS Website: Cooling with a cavity

This meeting will celebrate Professor Daniel Kleppner’s career of fundamental contributions in physics. An outstanding list of invited speakers will present the most recent and interesting topics in atomic physics.
News type: